DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Quercetagetin, an Active Component of Immature Citrus unshiu, in HaCaT Human Keratinocytes

  • Kang, Gyeoung-Jin (Department of Pharmacology, School of Medicine, Jeju National University) ;
  • Han, Sang-Chul (Department of Pharmacology, School of Medicine, Jeju National University) ;
  • Ock, Jong-Woo (School of Medicine, Jeju National University) ;
  • Kang, Hee-Kyoung (Department of Pharmacology, School of Medicine, Jeju National University) ;
  • Yoo, Eun-Sook (Department of Pharmacology, School of Medicine, Jeju National University)
  • Received : 2013.01.02
  • Accepted : 2013.01.21
  • Published : 2013.03.31

Abstract

Citrus fruit contain various flavonoids that have multiple biological activities. However, the content of these flavonoids are changed during maturation and immature Citrus is known to contain larger amounts than mature. Chemokines are significant mediators for cell migration, while thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well known as the typical inflammatory chemokines in atopic dermatitis (AD), a pruritic and chronic inflammatory skin disease. We reported recently that the EtOH extract of immature Citrus unshiu inhibits TARC and MDC production. Therefore, we investigated the activity of flavonoids contained in immature Citrus on TARC and MDC levels. As a result, among the various flavonoids, quercetagetin has stronger inhibitory effects on the protein and mRNA expression of TARC and MDC than other flavonoids. Quercetagetin particularly has better activity on TARC and MDC level than quercetin. In HPLC analysis, the standard peak of quercetagetin matches the peaks of extract of immature C. unshiu. This suggests that quercetagetin is an anti-inflammatory component in immature C. unshiu.

Keywords

References

  1. Arafa, el-SA., Zhu, Q., Barakat, B. M., Wani, G., Zhao, Q., El-Mahdy, M. A. and Wani, A. A. (2009) Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res. 69, 8910-8917. https://doi.org/10.1158/0008-5472.CAN-09-1543
  2. Baek, S., Kang, N. J., Popowicz, G. M., Arciniega, M., Jung, S. K., Byun, S., Song, N. R., Heo, Y. S., Kim, B. Y., Lee, H. J., Holak, T. A., Augustin, M., Bode, A. M., Huber, R., Dong, Z. and Lee, K. W. (2013) Structural and functional analysis of the natural JNK1 inhibitor quercetagetin. J. Mol. Biol. 452, 411-423.
  3. Cavia-Saiz, M., Busto, M. D., Pilar-Izquierdo, M. C., Ortega, N., Perez-Mateos, M. and Muniz, P. (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J. Sci. Food Agric. 90, 1238-1244. https://doi.org/10.1002/jsfa.3959
  4. Cespedes, C. L., Avila, J. G., Martinez, A., Serrato, B., Cal-deron-Mugica, J. C. and Salgado-Garciglia, R. (2006) Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J. Agric. Food Chem. 54, 3521-3527. https://doi.org/10.1021/jf053071w
  5. Choi, I. Y., Kim, S. J., Jeong, H. J., Park, S. H., Song, Y. S., Lee, J. H., Kang, T. H., Park, J. H., Hwang, G. S., Lee, E. J., Hong, S. H., Kim, H. M. and Um, J. Y. (2007) Hesperidin inhibits expression of hypoxia inducible factor-1 alpha and inflammatory cytokine production from mast cells. Mol. Cell. Biochem. 305, 153-161. https://doi.org/10.1007/s11010-007-9539-x
  6. Gough, D. J., Levy, D. E., Johnstone, R. W. and Clarke, C. J. (2008) IFNgamma signaling-does it mean JAK-STAT? Cytokine Growth Factor Rev. 19, 383-394. https://doi.org/10.1016/j.cytogfr.2008.08.004
  7. Hijnen, D., De Bruin-Weller, M., Oosting, B., Lebre, C., De Jong, E., Bruijnzeel-Koomen, C. and Knol, E. (2004) Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell- attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis. J. Allergy Clin. Immunol. 113, 334-340. https://doi.org/10.1016/j.jaci.2003.12.007
  8. Holvoet, S., Vincent, C., Schmitt, D. and Serres, M. (2003) The inhibition of MAPK pathway is correlated with down-regulation of MMP-9 secretion induced by TNF-alpha in human keratinocytes. Exp. Cell Res. 290, 108-119. https://doi.org/10.1016/S0014-4827(03)00293-3
  9. Huang, R. Y., Yu, Y. L., Cheng, W. C., OuYang, C. N., Fu, E. and Chu, C. L. (2010) Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol. 184, 6815-6821. https://doi.org/10.4049/jimmunol.0903991
  10. Kakinuma, T., Nakamura, K., Wakugawa, M., Mitsui, H., Tada, Y., Saeki, H., Torii, H., Asahina, A., Onai, N., Matsushima, K. and Tamaki, K. (2001) Thymus and activation-regulated chemokine in atopic dermatitis: Serum thymus and activation-regulated chemokine level is closely related with disease activity. J. Allergy Clin. Immunol. 107, 535-541. https://doi.org/10.1067/mai.2001.113237
  11. Kang, G. J., Han, S. C., Yi, E. J., Kang, H. K. and Yoo, E. S. (2011) The inhibitory effect of premature Citrus unshiu extract on atopic dermatitis in vitro and in vivo. Toxicol. Res. 27, 173-180. https://doi.org/10.5487/TR.2011.27.3.173
  12. Kim, Y. D., Ko, W. J., Koh, K. S., Jeon, Y. J. and Kim, S. H. (2009) Composition of flavonoids and antioxidative activity from juice of Jeju native citrus fruits during maturation. Korean J. Nutr. 42, 278-290. https://doi.org/10.4163/kjn.2009.42.3.278
  13. Lee, C. H., Jeong, T. S., Choi, Y. K., Hyun, B. H., Oh, G. T., Kim, E. H., Kim, J. R., Han, J. I. and Bok, S. H. (2001) Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem. Biophys. Res. Commun. 284, 681-688. https://doi.org/10.1006/bbrc.2001.5001
  14. Lee, E. J., Ji, G. E. and Sung, M. K. (2010) Quercetin and kaempferol suppress immunoglobulin E-mediated allergic inflammation in RBL-2H3 and Caco-2 cells. Inflamm. Res. 59, 847-854. https://doi.org/10.1007/s00011-010-0196-2
  15. Leung, T. F., Ma, K. C., Hon, K. L., Lam, C. W., Wan, H., Li, C. Y. and Chan, I. H. (2003) Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children. Pediatr. Allergy Immunol. 14, 296-301. https://doi.org/10.1034/j.1399-3038.2003.00052.x
  16. Middleton, E. Jr, Kandaswami, C. and Theoharides, T. C. (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673-751.
  17. Min, Y. D., Choi, C. H., Bark, H., Son, H. Y., Park, H. H., Lee, S., Park, J. W., Park, E. K., Shin, H. I. and Kim, S. H. (2007) Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line. Inflamm. Res. 56, 210-215. https://doi.org/10.1007/s00011-007-6172-9
  18. Miyata, Y., Tanaka, H., Shimada, A., Sato, T., Ito, A., Yamanouchi, T. and Kosano, H. (2011) Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Sci. 88, 613-618. https://doi.org/10.1016/j.lfs.2011.01.024
  19. Murakami, A., Nakamura, Y., Torikai, K., Tanaka, T., Koshiba, T., Koshimizu, K., Kuwahara, S., Takahashi, Y., Ogawa, K., Yano, M., Tokuda, H., Nishino, H., Mimaki, Y., Sashida, Y., Kitanaka, S. and Ohigashi, H. (2000) Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res. 60, 5059-5066.
  20. Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M. and Ohta, H. (2006) Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem. 70, 178-192. https://doi.org/10.1271/bbb.70.178
  21. Panicker, S. R., Sreenivas, P., Babu, M. S., Karunagaran, D. and Kartha, C. C. (2010) Quercetin attenuates monocyte chemoattractant protein-1 gene expression in glucose primed aortic endothelial cells through NF-kappaB and AP-1. Pharmacol. Res. 62, 328-336. https://doi.org/10.1016/j.phrs.2010.06.003
  22. Pease, J. E. (2011) Targeting chemokine receptors in allergic disease. Biochem. J. 434, 11-24. https://doi.org/10.1042/BJ20101132
  23. Pivarcsi, A. and Homey, B. (2005) Chemokine networks in atopic dermatitis: traffic signals of disease. Curr. Allergy Asthma Rep. 5, 284-290. https://doi.org/10.1007/s11882-005-0068-y
  24. Saeki, H. and Tamaki, K. (2006) Thymus and activation regulated chemokine (TARC)/CCL17 and skin diseases. J. Dermatol. Sci. 43, 75-84. https://doi.org/10.1016/j.jdermsci.2006.06.002
  25. Schmeda-Hirschmann, G., Tapia, A., Theoduloz, C., Rodriguez, J., Lopez, S. and Feresin, G. E. (2004) Free radical scavengers and antioxidants from Tagetes mendocina. Z. Naturforsch. C. 59, 345-353.
  26. Silalahi, J. (2002) Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 11, 79-84. https://doi.org/10.1046/j.1440-6047.2002.00271.x
  27. Yamashita, U. and Kuroda, E. (2002) Regulation of macrophage-derived chemokine (MDC, CCL22) production. Crit. Rev. Immunol. 22, 105-114.
  28. Yang, X., Kang, S. M., Jeon, B. T., Kim, Y. D., Ha, J. H., Kim, Y. T. and Jeon, Y. J. (2011). Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. J. Sci. Food Agric. 91, 1925-1927. https://doi.org/10.1002/jsfa.4402

Cited by

  1. JAK2-targeted anti-inflammatory effect of a resveratrol derivative 2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide vol.86, pp.12, 2013, https://doi.org/10.1016/j.bcp.2013.10.006
  2. Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk vol.23, pp.5, 2015, https://doi.org/10.4062/biomolther.2015.036
  3. In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues vol.53, pp.6, 2016, https://doi.org/10.1007/s13197-016-2228-6
  4. Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases vol.88, pp.2, 2014, https://doi.org/10.1016/j.bcp.2014.01.022
  5. Quercetagetin inhibits macrophage-derived chemokine in HaCaT human keratinocytes via the regulation of signal transducer and activator of transcription 1, suppressor of cytokine signalling 1 and transforming growth factor-β1 vol.171, pp.3, 2014, https://doi.org/10.1111/bjd.12938
  6. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells vol.447, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2014.03.121
  7. ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action vol.2015, 2015, https://doi.org/10.1155/2015/967053
  8. NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton vol.2014, 2014, https://doi.org/10.1155/2014/354843
  9. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis vol.21, pp.4, 2016, https://doi.org/10.1016/j.drudis.2016.02.011
  10. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders vol.17, pp.2, 2016, https://doi.org/10.3390/ijms17020160
  11. Chemical Composition and Antiproliferative Activity of Supercritical Extract of Immature Citrus Peel in human cervical carcinoma HeLa cells vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8836
  12. Petatewalide B, a novel compound from Petasites japonicus with anti-allergic activity vol.178, 2016, https://doi.org/10.1016/j.jep.2015.12.010
  13. Design, Synthesis, and Biological Evaluation of Quercetagetin Analogues as JNK1 Inhibitors vol.21, pp.47, 2015, https://doi.org/10.1002/chem.201502475
  14. Therapeutic Effects of S-Petasin on Disease Models of Asthma and Peritonitis vol.23, pp.1, 2015, https://doi.org/10.4062/biomolther.2014.069
  15. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract vol.134, 2015, https://doi.org/10.1016/j.talanta.2014.12.003
  16. The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets vol.2015, 2015, https://doi.org/10.1155/2015/904142
  17. Quercetagetin and Patuletin: Antiproliferative, Necrotic and Apoptotic Activity in Tumor Cell Lines vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102579
  18. Quercetagetin-Loaded Composite Nanoparticles Based on Zein and Hyaluronic Acid: Formation, Characterization, and Physicochemical Stability vol.66, pp.28, 2013, https://doi.org/10.1021/acs.jafc.8b01046
  19. Recovering Cucurbita pepo cv. ‘Lungo Fiorentino’ Wastes: UHPLC-HRMS/MS Metabolic Profile, the Basis for Establishing Their Nutra- and Cosmeceutical Valorisation vol.24, pp.8, 2013, https://doi.org/10.3390/molecules24081479
  20. Review of Phytochemical Compounds as Antiviral Agents Against Arboviruses from the Genera Flavivirus and Alphavirus vol.17, pp.None, 2013, https://doi.org/10.2174/1570163817666200122102443
  21. In Vitro and In Vivo Study on Humans of Natural Compound Synergy as a Multifunctional Approach to Cellulite-Derived Skin Imperfections vol.7, pp.2, 2020, https://doi.org/10.3390/cosmetics7020048
  22. Influence of Harvest Date and Postharvest Treatment on Carotenoid and Flavonoid Composition in French Marigold Flowers vol.68, pp.30, 2013, https://doi.org/10.1021/acs.jafc.0c02042
  23. Concise synthesis of quercetagetin (3,3ʹ,4ʹ,5,6,7-hexahydroxyflavone) with antioxidant and antibacterial activities vol.3, pp.None, 2021, https://doi.org/10.1016/j.rechem.2021.100255
  24. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19 vol.7, pp.None, 2013, https://doi.org/10.3389/fmolb.2020.599079