References
- Arafa, el-SA., Zhu, Q., Barakat, B. M., Wani, G., Zhao, Q., El-Mahdy, M. A. and Wani, A. A. (2009) Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res. 69, 8910-8917. https://doi.org/10.1158/0008-5472.CAN-09-1543
- Baek, S., Kang, N. J., Popowicz, G. M., Arciniega, M., Jung, S. K., Byun, S., Song, N. R., Heo, Y. S., Kim, B. Y., Lee, H. J., Holak, T. A., Augustin, M., Bode, A. M., Huber, R., Dong, Z. and Lee, K. W. (2013) Structural and functional analysis of the natural JNK1 inhibitor quercetagetin. J. Mol. Biol. 452, 411-423.
- Cavia-Saiz, M., Busto, M. D., Pilar-Izquierdo, M. C., Ortega, N., Perez-Mateos, M. and Muniz, P. (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J. Sci. Food Agric. 90, 1238-1244. https://doi.org/10.1002/jsfa.3959
- Cespedes, C. L., Avila, J. G., Martinez, A., Serrato, B., Cal-deron-Mugica, J. C. and Salgado-Garciglia, R. (2006) Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J. Agric. Food Chem. 54, 3521-3527. https://doi.org/10.1021/jf053071w
- Choi, I. Y., Kim, S. J., Jeong, H. J., Park, S. H., Song, Y. S., Lee, J. H., Kang, T. H., Park, J. H., Hwang, G. S., Lee, E. J., Hong, S. H., Kim, H. M. and Um, J. Y. (2007) Hesperidin inhibits expression of hypoxia inducible factor-1 alpha and inflammatory cytokine production from mast cells. Mol. Cell. Biochem. 305, 153-161. https://doi.org/10.1007/s11010-007-9539-x
- Gough, D. J., Levy, D. E., Johnstone, R. W. and Clarke, C. J. (2008) IFNgamma signaling-does it mean JAK-STAT? Cytokine Growth Factor Rev. 19, 383-394. https://doi.org/10.1016/j.cytogfr.2008.08.004
- Hijnen, D., De Bruin-Weller, M., Oosting, B., Lebre, C., De Jong, E., Bruijnzeel-Koomen, C. and Knol, E. (2004) Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell- attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis. J. Allergy Clin. Immunol. 113, 334-340. https://doi.org/10.1016/j.jaci.2003.12.007
- Holvoet, S., Vincent, C., Schmitt, D. and Serres, M. (2003) The inhibition of MAPK pathway is correlated with down-regulation of MMP-9 secretion induced by TNF-alpha in human keratinocytes. Exp. Cell Res. 290, 108-119. https://doi.org/10.1016/S0014-4827(03)00293-3
- Huang, R. Y., Yu, Y. L., Cheng, W. C., OuYang, C. N., Fu, E. and Chu, C. L. (2010) Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol. 184, 6815-6821. https://doi.org/10.4049/jimmunol.0903991
- Kakinuma, T., Nakamura, K., Wakugawa, M., Mitsui, H., Tada, Y., Saeki, H., Torii, H., Asahina, A., Onai, N., Matsushima, K. and Tamaki, K. (2001) Thymus and activation-regulated chemokine in atopic dermatitis: Serum thymus and activation-regulated chemokine level is closely related with disease activity. J. Allergy Clin. Immunol. 107, 535-541. https://doi.org/10.1067/mai.2001.113237
- Kang, G. J., Han, S. C., Yi, E. J., Kang, H. K. and Yoo, E. S. (2011) The inhibitory effect of premature Citrus unshiu extract on atopic dermatitis in vitro and in vivo. Toxicol. Res. 27, 173-180. https://doi.org/10.5487/TR.2011.27.3.173
- Kim, Y. D., Ko, W. J., Koh, K. S., Jeon, Y. J. and Kim, S. H. (2009) Composition of flavonoids and antioxidative activity from juice of Jeju native citrus fruits during maturation. Korean J. Nutr. 42, 278-290. https://doi.org/10.4163/kjn.2009.42.3.278
- Lee, C. H., Jeong, T. S., Choi, Y. K., Hyun, B. H., Oh, G. T., Kim, E. H., Kim, J. R., Han, J. I. and Bok, S. H. (2001) Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem. Biophys. Res. Commun. 284, 681-688. https://doi.org/10.1006/bbrc.2001.5001
- Lee, E. J., Ji, G. E. and Sung, M. K. (2010) Quercetin and kaempferol suppress immunoglobulin E-mediated allergic inflammation in RBL-2H3 and Caco-2 cells. Inflamm. Res. 59, 847-854. https://doi.org/10.1007/s00011-010-0196-2
- Leung, T. F., Ma, K. C., Hon, K. L., Lam, C. W., Wan, H., Li, C. Y. and Chan, I. H. (2003) Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children. Pediatr. Allergy Immunol. 14, 296-301. https://doi.org/10.1034/j.1399-3038.2003.00052.x
- Middleton, E. Jr, Kandaswami, C. and Theoharides, T. C. (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673-751.
- Min, Y. D., Choi, C. H., Bark, H., Son, H. Y., Park, H. H., Lee, S., Park, J. W., Park, E. K., Shin, H. I. and Kim, S. H. (2007) Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line. Inflamm. Res. 56, 210-215. https://doi.org/10.1007/s00011-007-6172-9
- Miyata, Y., Tanaka, H., Shimada, A., Sato, T., Ito, A., Yamanouchi, T. and Kosano, H. (2011) Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Sci. 88, 613-618. https://doi.org/10.1016/j.lfs.2011.01.024
- Murakami, A., Nakamura, Y., Torikai, K., Tanaka, T., Koshiba, T., Koshimizu, K., Kuwahara, S., Takahashi, Y., Ogawa, K., Yano, M., Tokuda, H., Nishino, H., Mimaki, Y., Sashida, Y., Kitanaka, S. and Ohigashi, H. (2000) Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res. 60, 5059-5066.
- Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M. and Ohta, H. (2006) Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem. 70, 178-192. https://doi.org/10.1271/bbb.70.178
- Panicker, S. R., Sreenivas, P., Babu, M. S., Karunagaran, D. and Kartha, C. C. (2010) Quercetin attenuates monocyte chemoattractant protein-1 gene expression in glucose primed aortic endothelial cells through NF-kappaB and AP-1. Pharmacol. Res. 62, 328-336. https://doi.org/10.1016/j.phrs.2010.06.003
- Pease, J. E. (2011) Targeting chemokine receptors in allergic disease. Biochem. J. 434, 11-24. https://doi.org/10.1042/BJ20101132
- Pivarcsi, A. and Homey, B. (2005) Chemokine networks in atopic dermatitis: traffic signals of disease. Curr. Allergy Asthma Rep. 5, 284-290. https://doi.org/10.1007/s11882-005-0068-y
- Saeki, H. and Tamaki, K. (2006) Thymus and activation regulated chemokine (TARC)/CCL17 and skin diseases. J. Dermatol. Sci. 43, 75-84. https://doi.org/10.1016/j.jdermsci.2006.06.002
- Schmeda-Hirschmann, G., Tapia, A., Theoduloz, C., Rodriguez, J., Lopez, S. and Feresin, G. E. (2004) Free radical scavengers and antioxidants from Tagetes mendocina. Z. Naturforsch. C. 59, 345-353.
- Silalahi, J. (2002) Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 11, 79-84. https://doi.org/10.1046/j.1440-6047.2002.00271.x
- Yamashita, U. and Kuroda, E. (2002) Regulation of macrophage-derived chemokine (MDC, CCL22) production. Crit. Rev. Immunol. 22, 105-114.
- Yang, X., Kang, S. M., Jeon, B. T., Kim, Y. D., Ha, J. H., Kim, Y. T. and Jeon, Y. J. (2011). Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. J. Sci. Food Agric. 91, 1925-1927. https://doi.org/10.1002/jsfa.4402
Cited by
- JAK2-targeted anti-inflammatory effect of a resveratrol derivative 2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide vol.86, pp.12, 2013, https://doi.org/10.1016/j.bcp.2013.10.006
- Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk vol.23, pp.5, 2015, https://doi.org/10.4062/biomolther.2015.036
- In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues vol.53, pp.6, 2016, https://doi.org/10.1007/s13197-016-2228-6
- Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases vol.88, pp.2, 2014, https://doi.org/10.1016/j.bcp.2014.01.022
- Quercetagetin inhibits macrophage-derived chemokine in HaCaT human keratinocytes via the regulation of signal transducer and activator of transcription 1, suppressor of cytokine signalling 1 and transforming growth factor-β1 vol.171, pp.3, 2014, https://doi.org/10.1111/bjd.12938
- (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells vol.447, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2014.03.121
- ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action vol.2015, 2015, https://doi.org/10.1155/2015/967053
- NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton vol.2014, 2014, https://doi.org/10.1155/2014/354843
- Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis vol.21, pp.4, 2016, https://doi.org/10.1016/j.drudis.2016.02.011
- The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders vol.17, pp.2, 2016, https://doi.org/10.3390/ijms17020160
- Chemical Composition and Antiproliferative Activity of Supercritical Extract of Immature Citrus Peel in human cervical carcinoma HeLa cells vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8836
- Petatewalide B, a novel compound from Petasites japonicus with anti-allergic activity vol.178, 2016, https://doi.org/10.1016/j.jep.2015.12.010
- Design, Synthesis, and Biological Evaluation of Quercetagetin Analogues as JNK1 Inhibitors vol.21, pp.47, 2015, https://doi.org/10.1002/chem.201502475
- Therapeutic Effects of S-Petasin on Disease Models of Asthma and Peritonitis vol.23, pp.1, 2015, https://doi.org/10.4062/biomolther.2014.069
- Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract vol.134, 2015, https://doi.org/10.1016/j.talanta.2014.12.003
- The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets vol.2015, 2015, https://doi.org/10.1155/2015/904142
- Quercetagetin and Patuletin: Antiproliferative, Necrotic and Apoptotic Activity in Tumor Cell Lines vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102579
- Quercetagetin-Loaded Composite Nanoparticles Based on Zein and Hyaluronic Acid: Formation, Characterization, and Physicochemical Stability vol.66, pp.28, 2013, https://doi.org/10.1021/acs.jafc.8b01046
- Recovering Cucurbita pepo cv. ‘Lungo Fiorentino’ Wastes: UHPLC-HRMS/MS Metabolic Profile, the Basis for Establishing Their Nutra- and Cosmeceutical Valorisation vol.24, pp.8, 2013, https://doi.org/10.3390/molecules24081479
- Review of Phytochemical Compounds as Antiviral Agents Against Arboviruses from the Genera Flavivirus and Alphavirus vol.17, pp.None, 2013, https://doi.org/10.2174/1570163817666200122102443
- In Vitro and In Vivo Study on Humans of Natural Compound Synergy as a Multifunctional Approach to Cellulite-Derived Skin Imperfections vol.7, pp.2, 2020, https://doi.org/10.3390/cosmetics7020048
- Influence of Harvest Date and Postharvest Treatment on Carotenoid and Flavonoid Composition in French Marigold Flowers vol.68, pp.30, 2013, https://doi.org/10.1021/acs.jafc.0c02042
- Concise synthesis of quercetagetin (3,3ʹ,4ʹ,5,6,7-hexahydroxyflavone) with antioxidant and antibacterial activities vol.3, pp.None, 2021, https://doi.org/10.1016/j.rechem.2021.100255
- In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19 vol.7, pp.None, 2013, https://doi.org/10.3389/fmolb.2020.599079