DOI QR코드

DOI QR Code

빠른 속도의 우주먼지 모사를 위한 레이저기반의 입자가속에 관한 실험적 연구

Experimental Study on Laser-driven Miniflyer for Description of Space Debris with High-speed

  • Baek, Won-Kye (Mechanical & Aerospace Engineering, Seoul National University, Institute of Advanced Aerospace Technology) ;
  • Yoh, Jai-Ick (Mechanical & Aerospace Engineering, Seoul National University, Institute of Advanced Aerospace Technology)
  • 투고 : 2012.07.12
  • 심사 : 2013.01.13
  • 발행 : 2013.02.01

초록

현재 자연적 또는 인공적으로 늘어난 지구 주위의 수많은 미세 입자들은 인공위성에 위협이 되고 있으며 인공위성과 우주 먼지간의 충돌 속도는 수 km/s에 이른다. 본 연구에서는 이러한 우주 먼지를 모사하기 위하여 작은 금속판을 레이저를 이용하여 가속하였다. 기존 연구에서는 다중코팅을 이용하여 속도 효율을 향상시켰으나 코팅하는데 시간과 비용이 많이 드는 단점이 있었다. 본 연구에서는 그러한 다중코팅 대신 단순한 검은색 페인트를 이용하여 코팅을 하지 않았을 때보다 1.5~2배 정도의 속도향상을 보였으며 Nd:YAG 레이저를 이용하여 1.4J이하에서 최대 1.42km/s의 속도를 얻었다. 이 속도는 정지궤도에서의 인공위성과 우주먼지 충돌을 모사하는데 적합하다.

Increasing numbers of space debris around the earth now pose a major threat to satellites as their impact velocity may reach up to several km/s. We use a pulse laser to accelerate a miniflyer for mimicking the space debris. The multi-layer coat on the confined medium is known to promote a higher acceleration. However, it requires some special techniques which take somewhat long time and cost to coat. Instead, we devised a simple concept to coat by the black lacquer paint on a flyer. It shows improvement in the flyer velocity by 1.5-2 times the uncoated, and the resulting velocity reached 1.42km/s with Nd:YAG laser energy under 1.4 joules. The resulting velocity is suitable for satellite vulnerability test for debris impact in the geostationary orbit.

키워드

참고문헌

  1. Stein, C., Roybal, R., Tlomak, P., In: Werling, E., editor., Proceedings of the Eighth International Symposium on Materials in Space Environment Toulouse, France: CNES Publication, 2000
  2. Walker, R., Martin, C., Stokes, H., Wilkinson, J., Sdunnus, H., Hauptmann, S., Beltrami, P., and Klinkrad, H., Update of the ESA Space Debris Mitigation Handbook, ESA Contract 14471/00/D/HK, 2002
  3. Hongo, T., Matsuda, A., Kondo, K., Nakamura, K., and Atou, T., " Flyer Acceleration by Pulsed Laser and its Application to Shock-Recovery Experiment on $MnF_2$," Japanese Journal of Applied Physics, Vol. 44, 2005, pp.5006-5008. https://doi.org/10.1143/JJAP.44.5006
  4. Watson, S., Gifford, M. J., and Field, J. E., " The initiation of fine grain pentaerythritol tetranitrate by laser-driven flyer plates," Journal of applied physics, Vol. 88, 2000, pp.65-69. https://doi.org/10.1063/1.373625
  5. Swift, D. C., Niemczura, J. G., Paisley, D. L., Johnson, R. P., Luo, S. N., and Tierney IV, T. E., " Laser-launched flyer plates for shock physics experiments," Review of Scientific Instruments, Vol. 76, 2005, 093907 https://doi.org/10.1063/1.2052593
  6. Paisley, D. L., Luo, S. N., Greenfield, S. R., and Koskelo, A. C., "Laser-launched flyer plate and confined laser ablation for shock wave loading: Validation and applications," Review of Scientific Instruments, Vol. 79, 2008, 023902 https://doi.org/10.1063/1.2839399
  7. Zhou, M., Zhang, Y. K., and Cai, L., " Adhesion measurement of thin films by a modified laser spallation technique : theoretical analysis and experimental investigation," Applied Physics A, Vol. 74, 2002, pp.475-480. https://doi.org/10.1007/s003390101185
  8. Ocana, J. L., Morales, M., Molpeceres, C., Garcia, O., Porro, J. A., and Garcia-Ballesteros, J. J., " Short pulse laser microforming of thin metal sheets for MEMS manufacturing," Applied Surface Science, Vol. 254, 2007, pp.997-1001. https://doi.org/10.1016/j.apsusc.2007.08.093
  9. Di, J., Zhou, M., Li, J., Li, C., Zhang, W., and Amoako, G., " Micro-punching process based on spallation delamination induced by laser driven-flyer," Applied Surface Science, Vol. 258, 2011, pp.2339-2343.
  10. Roybal, R. Tlomak, P. Stein, C., and Stokes, H., " Simulated space debris impact experiments on toughened laminated thin solar cell cover glass," International Journal of Impact Engineering, Vol. 23, 1999, pp.811-821. https://doi.org/10.1016/S0734-743X(99)00126-8
  11. Verker, R., Eliaz, N., Gouzman, I., Eliezer, S., Fraenkel, M., Maman, S., Beckmann, F., Pranzas, K., and Grossman, E., " The effect of simulated hypervelocity space debris on polymers," Acta Materialia, Vol. 52, 2004, pp.5539-5549. https://doi.org/10.1016/j.actamat.2004.08.013
  12. Stahl, D. B., and Paisley, D. L., US Patent No. 5,301,612, 1994
  13. Russo, R. E., " Laser ablation," Applied Spectroscopy, Vol. 49, 1995, pp.14A-28A.
  14. Han, T. H., Gojani, A. B., and Yoh, J. J., " Biolistic injection of microparticles with high-power Nd:YAG laser," Applied Optics, Vol. 49, 2010, pp.3035-3041. https://doi.org/10.1364/AO.49.003035
  15. Fairand, B. P., and Clauer, A. H., " Laser generation of high amplitude stress waves in materials," Journal of Applied Physics, Vol. 50, 1979, pp.1497-1502. https://doi.org/10.1063/1.326137
  16. Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S., " Introduction to Heat Transfer 5th edition," John Wiley & Sons, 2007, pp.719-720.
  17. Kim, Y. H. Baek, W. K., and Yoh, J. J., " Interaction of beam and coated metals at high power continuous irradiation," Optics and Lasers in Engineering, Vol. 49, 2011, pp.780-784. https://doi.org/10.1016/j.optlaseng.2011.03.010
  18. Lawrence, R. J. and Trott, W. M., " Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher," International Journal of Impact Engineering, Vol. 14, 1993, pp.439-449. https://doi.org/10.1016/0734-743X(93)90041-5
  19. Gojani, A. B., Yoh, J. J., and Yoo, J. H., " Extended measurement of crater depths for aluminum and copper at high irradiances by nanosecond visible laser pulses," Applied Surface Science, Vol. 255, 2008, pp.2777-2781. https://doi.org/10.1016/j.apsusc.2008.08.031
  20. Miller, C. W., " Set-up and evaluation of laser-driven miniflyer system", M. S. Dissertation, Georgia Institute of Technology, May 2009