DOI QR코드

DOI QR Code

Effects of Dietary Supplementation of Spirulina and Quercetin on Growth, Innate Immune Responses, Disease Resistance Against Edwardsiella tarda, and Dietary Antioxidant Capacity in the Juvenile Olive Flounder Paralichthys olivaceus

  • Kim, Sung-Sam (Department of Marine Biomedical Science, Jeju National University) ;
  • Rahimnejad, Samad (Department of Marine Biomedical Science, Jeju National University) ;
  • Kim, Kang-Woong (Aquafeed Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Bong-Joo (Aquafeed Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Kyeong-Jun (Department of Marine Biomedical Science, Jeju National University)
  • Received : 2012.05.15
  • Accepted : 2012.12.26
  • Published : 2013.03.30

Abstract

A 10-week feeding trial was conducted to examine the effects of dietary spirulina and quercetin on growth, innate immunity, disease resistance and dietary antioxidant capacity in the juvenile olive flounder. Triplicate groups of fish (initial body weight, $2.9{\pm}0.01g$) were fed one of isonitrogenous (48% crude protein) and isocaloric (17.4 MJ/kg DM) experimental diets containing 0% spirulina (as a control), 3.4% spirulina, or 6.8% spirulina with or without supplementation of 0.5% quercetin (designated as CON, SP3.4, SP6.8, and SP6.8 + Q, respectively) at a rate of 3% body mass twice daily. Higher dietary antioxidant capacity was found with spirulina supplementation, and the highest value (P < 0.05) was obtained with SP6.8 + Q diet. At the end of the feeding trial, no significant effects were observed on growth performance, body composition and disease resistance against Edwardsiella tarda. Lysozyme activity was significantly increased by spirulina supplementation (P < 0.05), and the highest value was observed in the group fed SP6.8 + Q diet. Also, significantly higher respiratory burst activity (P < 0.05) was found in SP3.4 group. According to the results of this study, dietary supplementation of 3.4% spirulina may enhance innate immunity of olive flounder.

Keywords

References

  1. Abdel-Tawwab M and Ahmad MH. 2009. Live spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquac Res 40, 1037-1046. http://dx.doi.org/10.1111/j.1365-2109.2009.02195.x.
  2. Abdel-Tawwab M, Khattab YAE, Ahmad MH and Shalaby AME. 2006. Compensatory growth, feed utilization, whole-body composition and hematological changes in starved juvenile Nile tilapia, Oreochromis niloticus (L.). J Appl Aquac 18, 17-36. http://dx.doi.org/10.1300/J028v18n03_02.
  3. Anderson DP and Siwicki AK. 1995. Basic haematology and serologyfor fish health programs. In: Diseases in Asian Aquaculture II. Shariff M, Arthur JR and Subasinghe JP, eds. Fish Health Section, Asian Fisheries Society, Manila, PH, pp. 185-202.
  4. Andrews SR, Sahu NP, Pal AK, Mukherjee SC and Kumar S. 2011. Yeast extract, brewer's yeast and spirulina in diets for Labeo rohita fingerlings affect haemato-immunological responses and survival following Aeromonas hydrophila challenge. Res Vet Sci 91, 103-109. http://dx.doi.org/10.1016/j.rvsc.2010.08.009.
  5. Association of Official Analytical Chemists. 1995. Official Methods Analysis. 16th ed. Association of Official Analytical Chemists, Arlington, VA, US.
  6. Bermejo P, Pinero E and Villar AM. 2008. Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chem, 110, 436-445. http://dx.doi.org/10.1016/j.foodchem.2008.02.021.
  7. Bhat VB and Madyastha KM. 2000. C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 275, 20-25. http://dx.doi.org/10.1006/bbrc.2000.3270.
  8. Brand-Williams W, Cuvelier ME and Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28, 25-30. http://dx.doi.org/10.1016/S0023-6438(95)80008-5.
  9. Brown BA. 1980. Hematology: Principles and Procedures. Lea and Febiger, Philadelphia, PA, US, pp. 71-112.
  10. Castano-Sanchez C, Fuji K, Ozaki A, Hasegawa O, Sakamoto T, Morishima K, Nakayama I, Fujiwara A, Masaoka T, Okamoto H, Hayashida K, Tagami M, Kawai J, Hayashizaki Y and Okamoto N. 2010. A second generation genetic linkage map of Japanese flounder (Paralichthys olivaceus). BMC Genomics 11, 554. http://dx.doi.org/10.1186/1471-2164-11-554.
  11. Cohen Z and Vonshak A. 1991. Fatty acid composition of Spirulina and Spirulina-like cyanobacteria in relation to their chemotaxonomy. Phytochemistry 30, 205-206. http://dx.doi.org/10.1016/0031-9422(91)84125-C.
  12. El-Sayed AFM. 1994. Evaluation of soybean meal, spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture 127, 169-176. http://dx.doi.org/10.1016/0044-8486(94)90423-5.
  13. Fauconneau B. 1984. The measurements of whole body protein synthesis in larval and juvenile carp (Cyprinus carpio). Comp Biochem Physiol B 78, 845-850. http://dx.doi.org/10.1016/0305-0491(84)90196-2.
  14. Food and Agriculture Organization of the United Nations. 2010. The State of World Fisheries and Aquaculture. Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome, IT.
  15. Galindo-Villegas J, Fukada H, Masumoto T and Hosokawa H. 2006. Effect of dietary immunostimulants on some innate immune responses and disease resistance against Edwardsiella tarda infection in Japanese flounder (Paralichthys olivaceus). Suisan Zoshoku 54, 153-162.
  16. Güroy D, Güroy B, Merrifield DL, Ergün S, Tekinay AA and Yigit M. 2011. Effect of dietary Ulva and Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss (Walbaum), during a starvation period. J Anim Pysiol Anim Nutr (Berl) 95, 320-327. http://dx.doi.org/10.1111/j.1439-0396.2010.01057.x.
  17. Hernández Serrano P. 2005. Responsible Use of Antibiotics in Aquaculture. FAO Fisheries Technical Paper. No. 469. FAO, Rome, IT.
  18. Kang JH, Kim WJ and Lee WJ. 2008. Genetic linkage map of olive flounder, Paralichthys olivaceus. Int J Biol Sci 4, 143-149.
  19. Khan Z, Bhadouria P and Bisen PS. 2005. Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6, 373-379. http://dx.doi.org/10.2174/138920105774370607.
  20. Lee DJ and Putnam GB. 1973. The response of rainbow trout to varying protein/energy ratios in a test diet. J Nutr 103, 916-922. https://doi.org/10.1093/jn/103.6.916
  21. Lu J, Takeuchi T and Satoh H. 2004. Ingestion and assimilation of three species of freshwater algae by larval tilapia Oreochromis niloticus. Aquaculture 238, 437-449. http://dx.doi.org/10.1016/j.aquaculture.2004.05.002.
  22. Mahajan G and Kamat M. 1995. ${\gamma}$-Linolenic acid production from Spirulina platensis. Appl Microbiol Biotechnol 43, 466-469. http://dx.doi.org/10.1007/BF00218450.
  23. Matty A and Smith P. 1978. Evaluation of a yeast, a bacterium and an alga as a protein source for rainbow trout. I. Effect of protein level on growth, gross conversion efficiency and protein conversion efficiency. Aquaculture 14, 235-246. http://dx.doi.org/10.1016/0044-8486(78)90097-2.
  24. Meng-Umphan K. 2009. Growth performance, sex hormone levels and maturation ability of Pla Pho (Pangasius bocourti) fed with Spirulina supplementary pellet and hormone application. Int J Agric Biol 11, 458-462.
  25. Miranda MS, Cintra RG, Barros SB and Mancini Filho J. 1998. Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res 31, 1075-1079. http://dx.doi.org/10.1590/S0100-879X1998000800007.
  26. Mustafa MG and Nakagawa H. 1995. A review: dietary benefits of algae as an additive in fish feed. Isr J Aquac-Bamidgeh 47, 155-162.
  27. Mustafa MG, Umino T and Nakagawa H. 1994. The effect of Spirulina feeding on muscle protein deposition in red sea bream, Pagrus major. J Appl Ichthyol 10, 141-145. http://dx.doi.org/10.1111/j.1439-0426.1994.tb00153.x.
  28. Mustafa MG, Wakamatsu S, Takeda TA, Umino T and Nakagawa H. 1995. Effects of algae meal as feed additive on growth, feed efficiency, and body composition in red sea bream. Fish Sci 61, 25-28.
  29. Mustafa MG, Umino T and Nakagawa H. 1997. Limited synergistic effect of dietary Spirulina on vitamin C nutrition of red sea bream Pagrus major. J Mar Biotechnol 5, 129-132.
  30. Nakagawa H and Montgomery WL. 2007. Algae. In: Dietary Supplements for the Health and Quality of Cultured Fish. Nakagawa H, Sato M and Gatlin DM 3rd, eds. CABI International, Cambridge, MA, US, pp. 133-168.
  31. Nakazoe J, Kimura S, Yokoyama M and Iida H. 1986. Effect of supplementation of alga to the diets on the growth and body composition of nibbler, Girella punctata Grey. Bull Tokai Reg Fish Res Lab 120, 43-51.
  32. Nandeesha MC, Gangadhara B, Varghese TJ and Keshavanath P. 1998. Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio L. Aquac Res 29, 305-312. http://dx.doi.org/10.1046/j.1365-2109.1998.00163.x.
  33. Nandeesha MC, Gangadhara B, Manissery JK and Venkataraman LV. 2001. Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis. Bioresour Technol 80, 117-120. http://dx.doi.org/10.1016/S0960-8524(01)00085-2.
  34. Nieto S, Garrido A, Sanhueza J, Loyola LA, Morales G, Leighton F, Valenzuela A. 1993. Flavonoids as stabilizers of fish oil: an alternative to synthetic antioxidants. J Am Oil Chem Soc 70, 773-778. http://dx.doi.org/10.1007/BF02542599.
  35. Otleş S and Pire R. 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. J AOAC Int 84, 1708-1714.
  36. Palmegiano GB, Agradi E, Forneris G, Gai F, Gasco L, Rigamonti E, Sicuro B and Zoccarato I. 2005. Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baeri). Aquac Res 36, 188-195. http://dx.doi.org/10.1111/j.1365-2109.2005.01209.x.
  37. Palmegiano GB, Gai F, Dapra F, Gasco L, Pazzaglia M and Peiretti PG. 2008. Effects of Spirulina and plant oil on the growth and lipid traits of white sturgeon (Acipenser transmontanus) fingerlings. Aquac Res 39, 587-595. http://dx.doi.org/10.1111/j.1365-2109.2008.01914.x.
  38. Peiretti PG and Meineri G. 2011. Effects of diets with increasing levels of Spirulina platensis on the carcass characteristics, meat quality and fatty acid composition of growing rabbits. Livest Sci 140, 218-224. http://dx.doi.org/10.1016/j.livsci.2011.03.031.
  39. Promkunthong W and Pipattanwattankhul A. 2005. Results of Spirulina alga on growth and antibody levels in mixed breed Catfish (Clarias macrocephalus ${\times}$ Clarias gariepinus (Burchell). Songkhlanakarin Technol Sci J 27, 115-132.
  40. Promya J and Chitmanat C. 2011. The effects of Spirulina platensis and Cladophora algae on the growth performance, meat quality and immunity stimulating capacity of the African Sharptooth Catfish(Clarias gariepinus). Int J Agric Biol 13, 77-82.
  41. Qureshi MA and Ali RA. 1996. Spirulina platensis exposure enhances macrophage phagocytic function in cats. Immunopharmacol Immunotoxicol 18, 457-463. http://dx.doi.org/10.3109/08923979609052747.
  42. Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P and Madyastha KM. 2000. Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun 277, 599-603. http://dx.doi.org/10.1006/bbrc.2000.3725.
  43. Rupasinghe HPV. 2008. The role of polyphenols in quality, postharvest handling, and processing of fruits. In: Postharvest Biology and Technology of Fruits, Vegetables and Flowers. Paliyath G, Murr DP, Handa AK and Lurie S, eds. Wiley-Blackwell Publishing, Hoboken, NJ, US, pp. 260-281.
  44. Smith MAK. 1981. Estimation of growth potential by measurement of tissue protein synthetic rates in feeding and fasting rainbow trout, Salmo gairdneri Richardson. J Fish Biol 19, 213-220. http://dx.doi.org/10.1111/j.1095-8649.1981.tb05825.x.
  45. Soivio A, Niemisto M and Backstrom M. 1989. Fatty acid composition of Coregonus muksun Pallas: changes during incubation, hatching, feeding and starvation. Aquaculture 79, 163-168. http://dx.doi.org/10.1016/0044-8486(89)90457-2.
  46. Swain P, Dash S, Sahoo PK, Routray P, Sahoo SK, Gupta SD, Meher PK and Sarangi N. 2007. Non-specific immune parameters of brood Indian major carp Labeo rohita and their seasonal variations. Fish Shellfish Immunol 22, 38-43. http://dx.doi.org/10.1016/j.fsi.2006.03.010.
  47. Takeuchi T, Lu J, Yoshizaki G and Satoh S. 2002. Effect on the growth and body composition of juvenile tilapia Oreochromis niloticus fed raw Spirulina. Fish Sci 68, 34-40. http://dx.doi.org/10.1046/j.1444-2906.2002.00386.x.
  48. Tongsiri S, Mang-Amphan K and Peerapornpisal Y. 2010. Effect of replacing fishmeal with Spirulina on growth, carcass composition and pigment of the Mekong giant catfish. Asian J Agric Sci 2, 106-110.
  49. Ungsethaphand T, Peerapornpisal Y, Whangchai N and Sardsud U. 2010. Effect of feeding Spirulina platensis on growth and carcass composition of hybrid red tilapia (Oreochromis mossambicus $$ O. niloticus). Maejo Int J Sci Technol 4, 331-336.
  50. Venkataraman LV. 1997. Spirulina platensis (Arthospira): physiology, cell biology and biotechnologym, edited by Avigad Vonshak. J Appl Phycol 9, 295-296. http://dx.doi.org/10.1023/A:1007911009912.
  51. Wang L, Pan B, Sheng J, Xu J and Hu Q. 2007. Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chem 105, 36-41. http://dx.doi.org/10.1016/j.foodchem.2007.03.054.
  52. Watanabe T, Liao WL, Takeuchi T and Yamamoto H. 1990. Effect of dietary Spirulina supplementation on growth performance and flesh lipids of cultured striped jack. J Tokyo Univ Fish 77, 231-239.
  53. Watanuki H, Ota K, Tassakka ACMAR, Kato T and Sakai M. 2006. Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture 258, 157-163. http://dx.doi.org/10.1016/j.aquaculture.2006.05.003.
  54. Zhou J, Song XL, Huang J and Wang XH. 2006. Effects of dietary supplementation of A3${alpha}$-peptidoglycan on innate immune responses and defense activity of Japanese flounder (Paralichthys oilvaceus). Aquaculture 251, 172-181. https://doi.org/10.1016/j.aquaculture.2005.06.015

Cited by

  1. Optimum Feeding Rate in Growing Olive Flounder Paralichthys olivaceus Fed Practical Extruded Pellet at Optimum Water Temperature (21℃) vol.26, pp.4, 2014, https://doi.org/10.13000/JFMSE.2014.26.4.789
  2. Optimum Feeding Rate in Growing Olive Flounder Paralichthys olivaceus Fed Practical Expanded Pellet at Optimum Water Temperature (19-21℃) vol.47, pp.3, 2014, https://doi.org/10.5657/KFAS.2014.0234
  3. Comparative Evaluation of Extruded and Moist Pellets for Development of High Efficiency Extruded Pellets in Olive Flounder Paralichthys olivaceus vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0801
  4. : Growth, digestive enzyme activities, fatty acid composition and responses to ammonia and hypoxia stress vol.48, pp.11, 2017, https://doi.org/10.1111/are.13379