DOI QR코드

DOI QR Code

위치 선택적 관능기화 그래핀의 합성과 특성분석

Syntheses and Characterizations of Position Specific Functionalized Graphenes

  • 허철 (금오공과대학교 에너지융합소재공학부) ;
  • 장진해 (금오공과대학교 에너지융합소재공학부)
  • Heo, Cheol (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
  • 투고 : 2012.11.25
  • 심사 : 2012.12.15
  • 발행 : 2013.03.25

초록

Hummers and Offeman 방법을 이용하여 흑연으로부터 산화 그래핀(graphene oxide; GO)을 합성하였고, 이를 이용하여 두 가지 다른 작용기화 그래핀(FGS)을 합성하였다. 그래핀 판상(graphene sheet; GS)에 수직방향으로 hexadecylamine(HDA)이 치환된 Ver-HDA-GS을 HDA와 에폭시기를 반응하여 얻었고, 한편으로, 환원된 GO(Reduced-GO; RGO)를 통하여 hexadecanol(HDO)와 알코올을 반응시켜 HDO가 수평 방향으로 치환된 Hor-HDO-GS를 합성하였다. 합성된 GO, RGO, Ver-HDA-GS 그리고 Hor-HDO-GS의 합성여부를 확인하기 위하여 FTIR을 이용하였으며, 합성된 물질들의 열 안정성 및 모폴로지를 각각 확인하였다. 원자간력 현미경(AFM)을 통해서 Ver-HDA-GS는 한 층 또는 두 층 두께의 그래핀으로 이루어졌고, 평균 두께는 1.76 nm임을 확인하였다. 합성된 FGS들의 열 안정성은 GO나 RGO보다 더 나았으며, 분산도의 경우에 Ver-HDA-GS는 DMSO, 톨루엔, 클로로포름, 데카린 등의 일상적인 용매에서 잘 분산되었다.

Graphene oxide (GO) was prepared by the Hummers and Offeman method from graphite. Two different types of functionalized graphene sheets (FGSs) were synthesized by using GO. Hexamethylamine (HDA) substituted vertically to the graphene sheet (Ver-HDA-GS) was synthesized from HDA and epoxy group in GSs. Whereas, horizontally substituted hexadecanol (HDO) to the GS(Hor-HDO-GS) was synthesized from HDO and alcohol groups via reduced GO (RGO), respectively. The structures of the GO, RGO, Ver-HDA-GS, and Hor-HDO-GS were identified by Fourier transform infrared (FTIR). In addition, we examined the thermal stability and morphology. Atomic force microscope (AFM) disclosed that Ver-HDA-GS consisted of one- or two-layer graphene regions. However, the Ver-HDA-GS layers showed average thickness of 1.76 nm. The thermal stabilities of the FGSs were better than those of the GO and RGO. The Ver- HDA-GS was well dispersed in common solvents such as dimethyl sulfoxide (DMSO), toluene, chloroform, and decalin.

키워드

참고문헌

  1. K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, J. Mater. Chem., 20, 2277 (2010). https://doi.org/10.1039/b920539j
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  3. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  4. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  5. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008). https://doi.org/10.1021/nl0731872
  6. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotechnol., 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199
  7. I. J, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett., 8, 4283 (2008). https://doi.org/10.1021/nl8019938
  8. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  9. A. K. Geim, Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  10. A. Reina, X. jia, J. Ho, D. Nezich, H. S, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  11. M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Phys. Chem. Chem. Phys., 13, 20836 (2011). https://doi.org/10.1039/c1cp22347j
  12. A. Mattausch and O. Pankratov, Phys. Stat. Sol. (b), 245, 1425 (2008). https://doi.org/10.1002/pssb.200844031
  13. H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
  14. S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, Nano Lett., 9, 1593 (2009). https://doi.org/10.1021/nl803798y
  15. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer, 52, 5 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  16. S. K. Pradhan, B. B. Nayak, S. S. Sahay, and B. K. Mishra, Carbon, 47, 2290 (2009). https://doi.org/10.1016/j.carbon.2009.04.024
  17. G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, and R. Ruoff, Carbon, 48, 630 (2010). https://doi.org/10.1016/j.carbon.2009.10.003
  18. S. Ansari and E. P. Giannelis, J. Polym. Sci. Part B: Polym. Phys., 47, 888 (2009). https://doi.org/10.1002/polb.21695
  19. A. V. Raghu, Y. R. Lee, and H. M. Jeong, Macromol. Chem. Phys., 209, 2487 (2008). https://doi.org/10.1002/macp.200800395
  20. D. Cai and M. Song, J. Mater. Chem., 20, 7906 (2010). https://doi.org/10.1039/c0jm00530d
  21. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  22. W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, Nature Chem., 1, 403 (2009). https://doi.org/10.1038/nchem.281
  23. H.-J. Shin, K. K. Kim, A. Benayad, S. -M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeng, J. M. Kim, J.-Y. Choi, and Y. H. Lee, Adv. Funct. Mater., 19, 1987 (2009). https://doi.org/10.1002/adfm.200900167
  24. S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Carbon, 44, 3342 (2006). https://doi.org/10.1016/j.carbon.2006.06.004
  25. W. Chen, L. Yan, and P. R. Bangal, J. Phys. Chem. C, 114, 19885 (2010). https://doi.org/10.1021/jp107131v
  26. G. Wang, X. Shen, B. Wang, J. Yao, and J. Park, Carbon, 47, 1359 (2009). https://doi.org/10.1016/j.carbon.2009.01.027
  27. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/b917103g
  28. M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007). https://doi.org/10.1021/cm0630800
  29. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  30. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B, 102, 4477 (1998). https://doi.org/10.1021/jp9731821

피인용 문헌

  1. Comparison of Properties of PVA Nanocomposites Containing Reduced Graphene Oxide and Functionalized Graphene vol.11, pp.3, 2019, https://doi.org/10.3390/polym11030450