DOI QR코드

DOI QR Code

Gall structure and specificity in Bostrychia culture isolates (Rhodomelaceae, Rhodophyta)

  • West, John A. (School of Botany, University of Melbourne) ;
  • Pueschel, Curt M. (Department of Biological Sciences, State University of New York at Binghamton) ;
  • Klochkova, Tatyana A. (Department of Biology, Kongju National University) ;
  • Kim, Gwang Hoon (Department of Biology, Kongju National University) ;
  • De Goer, Susan (11 Rue des Moguerou) ;
  • Zuccarello, Giuseppe C. (School of Biological Sciences, Victoria University of Wellington)
  • Received : 2012.11.19
  • Accepted : 2013.02.01
  • Published : 2013.03.15

Abstract

The descriptions of galls, or tumors, in red algae have been sparse. K$\ddot{u}$tzing (1865) observed possible galls of Bostrychia but only presented a drawing. Intensive culture observations of hundreds of specimens of the genus Bostrychia over many years have revealed that galls appeared in only a small subset of our unialgal cultures of B. kelanensis, Bostrychia moritziana/radicans, B. radicosa, B. simpliciuscula, and B. tenella and continued to be produced intermittently or continuously over many years in some cultures but were never seen in field specimens. Galls appeared as unorganized tissue found primarily on males and bisexuals, but occasionally on females and tetrasporophytes. The gall cells usually were less pigmented than neighboring tissue, but contained cells with fluorescent plastids and nuclei. The galls were not transferable to other potential hosts. Galls could be produced from gall-free tissue of cultures that originally had galls even after transfer to new culture dishes. Electon microscopy of galls on one isolate (3895) showed that virus-like particles are observed in some gall cells. It is possible that a virus is the causative agent of these galls.

Keywords

References

  1. Apt, K. & Gibor, A. 1989. Development and induction of bacteria-associated galls on Prionitis lanceolata (Rhodophyta). Dis. Aquat. Org. 6:151-156. https://doi.org/10.3354/dao006151
  2. Apt, K. E. 1988. Galls and tumor-like growths on marine macroalgae. Dis. Aquat. Org. 4:211-217. https://doi.org/10.3354/dao004211
  3. Apt, K. E. & Gibor, A. 1991. The ultrastructure of galls on the red alga Gracilaria epihippisora. J. Phycol. 27:409-413. https://doi.org/10.1111/j.0022-3646.1991.00409.x
  4. Ashen, J. B., Cohen, J. D. & Goff, L. J. 1999. GC-SIM-MS detection and quantification of free indole-3-acetic acid in bacterial galls on the marine alga Prionitis lanceolata (Rhodophyta). J. Phycol. 35:493-500. https://doi.org/10.1046/j.1529-8817.1999.3530493.x
  5. Ashen, J. B. & Goff, L. J. 1996. Molecular identification of a bacterium associated with gall formation in the marine red alga Prionitis lanceolata. J. Phycol. 32:286-297. https://doi.org/10.1111/j.0022-3646.1996.00286.x
  6. Ashen, J. B. & Goff, L. J. 1998. Galls on the marine red alga Prionitis lanceolata (Halymeniaceae): specific induction and subsequent development of an algal-bacterial symbiosis. Am. J. Bot. 85:1710-1721. https://doi.org/10.2307/2446505
  7. Ashen, J. B. & Goff, L. J. 2000. Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Appl. Environ. Microbiol. 66:3024-3030. https://doi.org/10.1128/AEM.66.7.3024-3030.2000
  8. Correa, J. A., Flores, V. & Sanchez, P. 1993. Deformative disease in Iridaea laminarioides (Rhodophyta): gall develoment associated with an endophytic cyanobacterium. J. Phycol. 29:853-860. https://doi.org/10.1111/j.0022-3646.1993.00853.x
  9. Francki, R. I. B., Milne, R. G. & Hatta, T. 1985. Atlas of plant viruses. CRC Press, Boca Raton, FL, Vol. 1. 222 pp, Vol. 2. 284 pp.
  10. King, R. J. & Puttock, C. F. 1989. Morphology and taxonomy of Bostrychia and Stictosiphonia (Rhodomelaceae/Rhodophyta). Aust. Syst. Bot. 2:1-73. https://doi.org/10.1071/SB9890001
  11. Kutzing, F. T. 1865. Tabulae phycologicae. Abbildungen der Tange. Vol. 15. W. Koehne, Nordhausen, 36 pp.
  12. McBride, D. L., Kugrens, P. & West, J. A. 1974. Light and electron microscopic observations on red algal galls. Protoplasma 79:249-264. https://doi.org/10.1007/BF01276605
  13. Pueschel, C. M. 1995. Rod-shaped virus-like particles in the endoplasmic reticulum of Audouinella saviana (Acrochaetiales, Rhodophyta). Can. J. Bot. 73:1974-1980. https://doi.org/10.1139/b95-211
  14. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208-212. https://doi.org/10.1083/jcb.17.1.208
  15. Scheffer, R. P. 1997. The nature of disease in plants. Cambridge University Press, Cambridge, 325 pp.
  16. Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43. https://doi.org/10.1016/S0022-5320(69)90033-1
  17. Tsekos, I. 1982. Tumour-like growths induced by bacteria in the thallus of a red alga, Gigartina teedii (Roth) Lamour. Ann. Bot. 49:123-126.
  18. West, J. A. 2005. Long term macroalgal culture maintenance. In Andersen, R. A. (Ed.) Algal Culturing Techniques. Academic Press, New York, pp. 157-163.
  19. West, J. A. & Zuccarello, G. C. 1999. Biogeography of sexual and asexual populations in Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Phycol. Res. 47:115-123. https://doi.org/10.1111/j.1440-1835.1999.tb00292.x
  20. Zuccarello, G. C. 2008. A fungal gall of Catenella nipae (Caulacanthaceae, Rhodophyta) and a review of Catenellocolax leeuwenii. Bot. Mar. 51:436-440.
  21. Zuccarello, G. C. & West, J. A. 2003. Multiple cryptic species: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J. Phycol. 39:948-959. https://doi.org/10.1046/j.1529-8817.2003.02171.x
  22. Zuccarello, G. C. & West, J. A. 2006. Molecular phylogeny of the subfamily Bostrychioideae (Ceramiales, Rhodophyta): subsuming Stictosiphonia and highlighting polyphyly in species of Bostrychia. Phycologia 45:24-36. https://doi.org/10.2216/05-07.1
  23. Zuccarello, G. C. & West, J. A. 2011. Insights into evolution and speciation in the red alga Bostrychia: 15 years of research. Algae 26:21-32. https://doi.org/10.4490/algae.2011.26.1.021
  24. Zuccarello, G. C., West, J. A., Karsten, U. & King, R. J. 1999. Molecular relationships within Bostrychia tenuissima (Rhodomelaceae, Rhodophyta). Phycol. Res. 47:81-85. https://doi.org/10.1111/j.1440-1835.1999.tb00287.x

Cited by

  1. Identification of three proteins involved in fertilization and parthenogenetic development of a brown alga, Scytosiphon lomentaria vol.240, pp.6, 2014, https://doi.org/10.1007/s00425-014-2148-5
  2. Growth responses of Chondrus ocellatus Holmes (Gigartinales, Rhodophyta) to two endophytes, Mikrosyphar zosterae Kuckuck (Ectocarpales, Ochrophyta) and Ulvella ramosa (N. L. Gardner) R. Nielsen (Ulvales, Chlorophyta) in culture vol.31, pp.4, 2016, https://doi.org/10.4490/algae.2016.31.12.9
  3. Wart-like spot formation on the fronds of Chondrus ocellatus (Gigartinales) by a brown alga, Mikrosyphar zosterae (Ectocarpales) in Korea 2017, https://doi.org/10.1007/s10811-016-1028-8
  4. Mutant swarms of a totivirus-like entities are present in the red macroalgaChondrus crispusand have been partially transferred to the nuclear genome vol.52, pp.4, 2016, https://doi.org/10.1111/jpy.12427
  5. Seasonal Variation in the Occurrence and Abundance of Mangrove Macroalgae in a Malaysian Estuary vol.37, pp.2, 2016, https://doi.org/10.7872/crya/v37.iss2.2016.109
  6. Chloroplast virus causes green-spot disease in cultivated Pyropia of Korea vol.17, 2016, https://doi.org/10.1016/j.algal.2016.05.023
  7. (Delesseriaceae, Rhodophyta) in New Ireland, Papua New Guinea vol.66, pp.3, 2018, https://doi.org/10.1111/pre.12223