DOI QR코드

DOI QR Code

An Implementation of Table-top based Augmented Reality System for Motor Rehabilitation of the Paretic Hand

손 마비환자의 재활운동을 위한 테이블-탑 증강현실 시스템 구현

  • Received : 2012.08.01
  • Accepted : 2012.11.22
  • Published : 2013.02.28

Abstract

This paper presents an augmented reality (AR) based rehabilitation exercise system to enhance the motor function of the hands for the paretic/hemi-paretic patient. The existing rehabilitation systems rely on mechanical apparatus for palsy rehabilitation, but we aim to use the rehabilitation system at home with easy configuration and minimized equipment by the computer vision based approach. The proposed method evaluates the interaction status of the fingertip action by using the position and the contact of the fingertip markers. We obtain the 2D positions of the fingertip markers from a single camera, and then transform the 3D positions from the calibrated camera space by using an ARToolKit marker. We adopt simple geometric calculation by the conversion of the 2D interest points into the 3D interaction points for the simple interactive task in AR environment. Some experimental results show that the proposed method is practical and simply applicable to the applications with personal AR interaction.

본 논문에서는 마비/편마비 환자의 손 재활운동을 위한 증강현실 인터랙션을 통한 재활운동시스템을 제안한다. 주로 기계적 장치에 의존하고 있는 기존의 마비환자 재활운동시스템에서 가정에서 손쉽게 재활훈련을 수행할 수 있도록 시스템을 구성하기위하여 컴퓨터 비전 기법을 이용하여 재활훈련에 필요한 장비를 최소화하고 좀 더 간편하게 설치하여 사용할 수 있도록 하는데 초점을 맞추었다. 본 논문에서 제안된 방법은 손끝의 움직임과 상태를 손끝마커의 위치와 접촉여부를 검사함으로써 인터랙션 상태를 점검한다. 한대의 카메라로부터 입력되는 손끝 마커의 2차원 위치는 3차원 객체와의 인터랙션을 위하여 ARToolKit 마커를 기반으로 보정된 3차원 카메라 공간상의 좌표로 변환되어 사용된다. 3차원 좌표계로 변환과정을 거친 손끝 마커의 3차원 위치는 3차원 객체와의 인터랙션에 반영함으로써 증강현실 기반의 인터랙션을 구현하였다. 본 논문에서 제시한 인터랙션 기법의 구현내용을 실험결과에서 나타내었고, 증강현실 기반 테이블탑 환경에서 마비환자의 재활운동에 활용될 수 있음을 나타내었다.

Keywords

References

  1. P. Milgram and F. Kishino, "A Taxonomy of Mixed Reality Visual Displays," IEICE Trans. Information Systems, Vol. E77-D, No. 12, pp. 1321-1329, 1994. (호 기입 요함!)
  2. P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, "Augmented Reality: A Class of Displays on the Reality-virtuality Continuum," Tele-manipulator and Tele-presence Technologies, Vol. 2351, pp. 282-292, 1994.(호 기입 요함!-호 없음)
  3. F.P. Brooks, Jr., "The Computer Scientist as Toolsmith II," Communications of the ACM, Vol.39, No. 3, pp. 61-68, 1996.(호 기입 요함!)
  4. J.H. Carr and R.B. Shephered, Stroke Rehabilitation, Butterworth-Heinemann, London, 2003.
  5. H.M. Feys, W.J. De Weerdt, B.E. Selz, G.A. Cox Steck, R. Spichiger, L.E. Vereeck, K.D. Putman, and G.A. Van Hoydonck, "Effect of a Therapeutic Intervention for the Hemiplegic Upper Limb in the Acute Phase After Stroke," A Single-Blind, Randomized, Controlled Multicenter Trial, Vol. 29, No. 4, pp. 785-792, 1998. https://doi.org/10.1161/01.STR.29.4.785
  6. L. Oujamaa, I. Relave, J. Froger, D. Mottet, and J.Y. Pelissier, "Rehabilitation of Arm Function After Stroke," Literature Review, Annals of Physical and Rehabilitation Medicine, Vol. 52, No. 3, pp. 269-293, 2009. https://doi.org/10.1016/j.rehab.2008.10.003
  7. 박수현, 유은영, "강제유도운동치료에 관한 고찰," 대한작업치료학회지, 제12권, 제1호, pp. 123-137, 2004.
  8. 박지원, 김식현, 남기석, 김연희, 배성수, "상지 신경 가동기법이 뇌졸중 후 편마비 환자의 기능 회복에 미치는 영향," 한국전문물리치료학회 지, 제8권, 제2호, pp. 29-39, 2001.
  9. L.F. Lucca, "Virtual Reality and Motor Rehabilitation of the Upper Limb After Stroke: A Generation of Progress?," Journal of Rehabilitation Medicine , Vol. 41, No. 12, pp. 1003-1006, 2009. https://doi.org/10.2340/16501977-0405
  10. F.D. Rose, E.A. Attree, B.M. Brooks, D.M. Parslow, P.R. Penn, and N. Ambihaipahan, "Training in Virtual Environments: Transfer to Real World Tasks and Equivalence to Real Task Training," Ergonomics, Vol. 43, No. 4, pp. 494-511, 2000. https://doi.org/10.1080/001401300184378
  11. S.R. Sharar, G.J. Carrougher, D. Nakamura, H.G. Hoffman, D.K. Blough, and D.R. Patterson, "Factors Influencing the Efficacy of Virtual Reality Distraction Analgesia during Postburn Physical Therapy: Preliminary Results from 3 Ongoing Studies," Archives of Physical Medicine and Rehabilitation, Vol. 88, No. 12, pp. 43-49, 2007. https://doi.org/10.1016/j.apmr.2006.10.004
  12. 임명재, 정희웅, 이기영, "증강현실 기반의 물체 인식을 통한 게임형 인지 재활 시스템," 한국인터넷방송통신학회논문지, 제11권, 제3호, pp. 93- 98, 2011.
  13. 이병희, 김성렬, 서현두, 유하나, "뇌성마비아동의 시공간적 보행능력에 미치는 증강 현실기반 운동 프로그램의 임상적 유용성 연구," 특수교육재활과학연구, 제48권, 제4호, pp. 211-230, 2009.
  14. 최완, 김태영, 임철수, "재활 훈련 서비스를 위한 실시간 모션인식 알고리즘," 멀티미디어학회논문지, 제10권, 제9호, pp. 1143-1152, 2007.
  15. Y. Wu and T.S. Huang, "View-Independent Recognition of Hand Postures," Proc. Computer Vision and Pattern Recognition, Vol. 2, pp. 88-94, 2000.
  16. Y. Wu, Q. Liu, and T.S. Huang, "An Adaptive Self-organizing Color Segmentation Algorithm with Application to Robust Real-time Human Hand Localization," Proc. Asian Conf. on Computer Vision, pp. 1106-1111, 2000.
  17. X. Zhu, J. Yang, and A. Waibel, "Segmenting Hands of Arbitrary Color," Proc. Int. Conf. Autom. Face and Gesture Recognition, pp. 446-453, 2000.
  18. M. Kolsch and M. Turk, "Robust Hand Detection," Proc. Int. Conf. Autom. Face and Gesture Recognition, pp. 614-619, 2004.
  19. E.J. Ong and R. Bowden, "A Boosted Classifier Tree for Hand Shape Detection," Proc. Int. Conf. Automatic Face and Gesture Recognition, pp. 889-894, 2004.
  20. P. Viola and M. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features," Proc. Computer Vision and Pattern Recognition, pp. 511-518, 2001.
  21. P. Buehler, M. Everingham, D.P. Huttenlocher, and A. Zisserman, "Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts," Proc. British Machine Vision Conference, Vol. 110, pp. 1-10, 2008.
  22. L. Karlinsky, M. Dinerstein, D. Harari, and S. Ullman, "The Chains Model for Detecting Parts by Their Context," Proc. Computer Vision and Pattern Recognition, pp. 25-32, 2010.
  23. M.P. Kumar, P.H.S. Torr, and A. Zisserman, "Efficient Discriminative Learning of Partsbased Models," Proc. IEEE International Conference on Computer Vision, pp. 552-559, 2009.
  24. RelayHealth, http://www.relayhealth.com/
  25. ARToolKit, HIT Lab., http://www.artoolworks.com/.
  26. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, USA: Cambridge University Press, New York, NY 2003.
  27. T. Horprasert, D. Harwood, and L.S. Davis, "A Statistical Approach for Real-time Robust Background Subtraction and Shadow Detection," IEEE International Conference on Computer Vision, Vol. 99, pp. 1-19, 1999.
  28. R.C. Gonzalez and R.E. Woods, Digital Image Processing, Prentice Hall, New Jersey, 2002.
  29. Optitrack, NaturalPoint, http://www.naturalpoint.com/optitrack/, 1996.
  30. M.S. Cameirao, S.B. Badia, E.D. Oller, and P.F. Verschure, "Neurorehabilitation using the Virtual Reality based Rehabilitation Gaming System: Methodology, Design, Psychometrics, Usability and Validation," Journal of Neuroengineering Rehabilitation, Vol. 7, pp. 48-62, 2010. https://doi.org/10.1186/1743-0003-7-48
  31. S.K. Charles, H.I. Krebs, B.T. Volpe, D. Lynch, and N. Hogan, "Wrist Rehabilitation Following Stroke: Initial Clinical Results," Proc. International Conference on Rehabilitation Robotics, pp. 13-16, 2005.

Cited by

  1. An Implementation of Real-time Motion Restoration System based on Inverse Kinematics vol.17, pp.6, 2014, https://doi.org/10.9717/kmms.2014.17.6.741
  2. Hand Rehabilitation System Using a Hand Motion Recognition Device vol.19, pp.8, 2014, https://doi.org/10.9708/jksci.2014.19.8.129