DOI QR코드

DOI QR Code

Distribution of Flood Sediment Deposits using the Seafloor Image by Side Scan Sonar near the Northern Coast of Gungchon-ri, East Sea

Side scan sonar 해저면 음향영상을 이용한 동해 궁촌리 북부 연안의 홍수퇴적물 분포

  • Received : 2012.10.26
  • Accepted : 2013.01.24
  • Published : 2013.02.28

Abstract

To analyze the distribution pattern of flood sediment deposits near the mouth of Chucheoncheon (river), side scan sonar images and seafloor sediment properties were investigated in the offshore area within about 50 m deep in water. Based on the analysis result of the sonar images, the seafloor of the study area is divided into three areas of basement, sandy-mud, and dispersed flood sediment. The colors of sonar images in each area are represented by dark black, light grey, and greyish black, respectively. The sediment composition in the grey black area shows 33.73% of gravel, 62.88% of sand, 3.37% of silt, and 0.02% of clay. On the other hand, the composition of the light grey area is 10.31% of sand, 56.42% of silt, and 33.27% of clay. Especially the sediment of the grey black area contains the considerable amount of burned plant fragments in black color, which could distinctly be differentiated from those in the offshore. The distribution pattern of the flood sediment deposits suggests that the land-originated detrital sediments seem to be transported from the Chucheon river into offshore along the shore rather than transversely. In conclusion, the longshore current of the study area is probably dominant to affect the spatial distribution of bottom features.

추천천 하구 근처에 홍수퇴적물 분포 패턴을 분석하기 위해, 측면주사소나(side scan sonar) 이미지와 해저퇴적물의 특성을 수심 50 m 이하 연안지역에서 조사하였다. 소나 이미지 분석을 바탕으로 연구 지역의 해저는 기반암, 모래질펄, 홍수퇴적물 분포지역, 3개 지역으로 구분된다. 각 지역의 측면주사소사 이미지의 색상은 아주 검은 색, 비교적 밝은색, 그리고 암회색으로 표시된다. 해저퇴적물은 암회색 지역에서 자갈 33.73%, 모래 62.88%, 실트 3.37%, 점토 0.02%이고, 모래질 펄 지역에서 모래 10.31%, 실트 56.42%, 점토 33.27%로 분석되었다. 특히 암회색 지역의 퇴적물은 다량의 불에 탄 식물 조각편을 포함하고 있어 주변 연안에서 관찰할 수 있는 퇴적물과는 뚜렷한 차이를 보인다. 홍수퇴적물의 분포 형태는 추천천 하구에서 해양으로 해안선에 수직하게 분포하지 않고, 연안을 따라서 분포되어 있음을 확인할 수 있었다. 결론적으로 연구 지역의 연안류의 흐름이 해저퇴적상의 공간적 분포 형태에 지배적으로 영향을 주었다.

Keywords

References

  1. Boggs, S.Jr., 2011, Principles of sedimentology and stratigraphy. Pearson, New jersey, USA, 585 p.
  2. Clay, C.S., Ess, J., and Weisman, I., 1964, Lateral echo sounding of the ocean bottom on the continental rise. Journal of Geophysical Research, 69, 3823-3833. https://doi.org/10.1029/JZ069i018p03823
  3. Folk, R.L. and Ward, W., 1957, Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Research, 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  4. Kim, S.R., Yoo, H.R., Park, G.T., Lee, Y.K., and Ann, C.H., 1987, Digital processing and acoustic backscattering characteristics on the seafloor image by side scan sonar. Journal of the Oceanological Society of Korea, 22, 143-152. (in Korean)
  5. Kim, S.R., Park, G.T., and Lee, Y.K., 1994, A study on transmit/receive signal control of the 105 KHz side scan sonar. Korea Ocean Research and Development Institute, BSPE 00416-700-5, 75 p. (in Korean)
  6. Kim, S.R., Park, G.T., Lee, Y.K., Suk, B.C., Choi, D.R., Han, S.J., and Yoo, H.S., 1997, Water depth calculation from side scan sonar data and verification of tow-fish position correction. Journal of the Oceanological Society of Korea, 19, 91-104. (in Korean)
  7. Kim, S.R., Woo, H.J., Lee, Y.K., Jeong, K.S., Je, J.G., Park, G.T., Jung, B.H., and Cho, J.H., 2002, Sea-bottom sediments and seafloor acoustic image by side scan sonar on Sindu-ri Offshore. Journal of the Korean Earth Science Society, 23, 707-721. (in Korean)
  8. Kim, S.R., Lee, Y.K., Park, G.T., Suk, B.C., and Jung, B.H., 2003, Absolute sonar position on side scan sonar data processing. Journal of the Korean Earth Science Society, 24, 467-476. (in Korean)
  9. Kim, S.R., 2005, Side scan sonar practice and data processing-from site survey to mosaic mapping. Shortterm lecture textbook, Korean Society of Earth and Exploration Geophysicists, 97 p. (in Korean)
  10. Kim, S.R., Lee, Y.K., Jung, B.H., and Suk, B.C., 2006, Mosaic method improvement of seafloor acoustic image on side scan sonar data processing. Proceeding in Fall Conference of the Journal of the Korean Earth Science Society, 60-65. (in Korean)
  11. Malinverno, A., Edwards, M.H., and Ryan, W.B.F., 1990, Processing of SeaMARC swath sonar data. IEEE Journal of Oceanic Engineering, 15, 14-23. https://doi.org/10.1109/48.46832
  12. McKinney, C.M. and Anderson, C.D., 1964, Measurements of backscattering of sound from the ocean bottom. Journal of the Acoustical Society of America, 36, 158-163. https://doi.org/10.1121/1.1918927
  13. Nichols, G., 2009, Sedimentology and stratigraphy. Wiley-Blackwell, Vancouver, Canada, 419 p.
  14. Samcheok-si, 2002, Typhoon No 15 Rusa flood damage white paper. Samcheok, Korea, 732 p. (in Korean)
  15. Triton, 2005, XTF (eXtended Triton Format) files description documents. Triton Imaging Instruments, California, USA, 26 p.
  16. Wong, H.K. and Cesterman, W.D., 1968, Bottom backscattering near grazing incidence in shallow water. Journal of the Acoustical Society of America., 44, 1713-1733. https://doi.org/10.1121/1.1911318

Cited by

  1. Survey of Seafloor at Chagwi-do of Jeju Island to Select 60-m-class Sea Test Bed of Wave Energy Converter vol.31, pp.4, 2017, https://doi.org/10.26748/KSOE.2017.08.31.4.308
  2. Development and Application of Learning on Geological Field Trip Utilizing on Social Construction of Scientific Model vol.39, pp.2, 2018, https://doi.org/10.5467/JKESS.2018.39.2.178