• Title/Summary/Keyword: flood sediment deposits

Search Result 8, Processing Time 0.224 seconds

Distribution of Flood Sediment Deposits using the Seafloor Image by Side Scan Sonar near the Northern Coast of Gungchon-ri, East Sea (Side scan sonar 해저면 음향영상을 이용한 동해 궁촌리 북부 연안의 홍수퇴적물 분포)

  • Lee, Cheol-Ku;Jung, Seom-Kyu;Kim, Seong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.41-50
    • /
    • 2013
  • To analyze the distribution pattern of flood sediment deposits near the mouth of Chucheoncheon (river), side scan sonar images and seafloor sediment properties were investigated in the offshore area within about 50 m deep in water. Based on the analysis result of the sonar images, the seafloor of the study area is divided into three areas of basement, sandy-mud, and dispersed flood sediment. The colors of sonar images in each area are represented by dark black, light grey, and greyish black, respectively. The sediment composition in the grey black area shows 33.73% of gravel, 62.88% of sand, 3.37% of silt, and 0.02% of clay. On the other hand, the composition of the light grey area is 10.31% of sand, 56.42% of silt, and 33.27% of clay. Especially the sediment of the grey black area contains the considerable amount of burned plant fragments in black color, which could distinctly be differentiated from those in the offshore. The distribution pattern of the flood sediment deposits suggests that the land-originated detrital sediments seem to be transported from the Chucheon river into offshore along the shore rather than transversely. In conclusion, the longshore current of the study area is probably dominant to affect the spatial distribution of bottom features.

Estimation of Reservoir Sediment Deposition Using Two Dimensional Model (2차원 모형을 이용한 저수지 퇴사량 예측)

  • Lee, Wonho;Kim, Jingeuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.21-27
    • /
    • 2008
  • The Sediment deposits in rivers and reservoirs are major components interfering with the useful function of the reservoirs, and clogging the inlet port at water intakes in rivers and erosion of pump impellers. Therefore, an accurate estimation method of sediment deposition is requisite to the efficient water resources investigation, planning and management. The objective of this paper is to forecast of reservoir sediment deposition using two dimensional model (SMS) to UnMun reservoir in GyeongSangBukDo. The RUSLE model showed that reservoirs volume was decreased $2,084.09{\times}10^6m^3$ after 50 years and $2,196.65{\times}10^6m^3$ after 100 years, which is plan flood level elevation (EL.152.12 m) reservoir. The two dimensional model showed that reservoirs volume was decreased $2,227.41{\times}10^6m^3$ after 50 years and $2,121.47{\times}10^6m^3$ after 100 years, which is plan flood level elevation (EL.152.12 m) reservoir. The results of this application showed that the use of two dimensional model was very effective for the estimation sediment deposits throughout the reservoir.

  • PDF

Type Selection of Sediment Desilting Machines in Yellow River Irrigation System

  • Wang, Huazhong;Dang, Yongliang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.257-262
    • /
    • 1996
  • Large amount of water is diverted annually for irrigation along the Yellow River. Owing to the tremendous sediment carried by the river , sediment deposits is an important problem in irrigation and drainage system. The sediment has to be taken out by machines from the irrigation system, otherwise water can not be available in the right place at the right time. In order to improve the sediment desilting efficiency, the sediments that settle in certain sites of a irrigation system must be removed by different desilting machines with special performance and working conditions. Those certain sites include : the diversion canal in the flood plain , the mouth of inlet, settling basin , irrigation and drainage system. In view of removal sediment above, the paper presents the ideas of type selection of desilting machines applied to certain sites. Proposals of making further improvement on performance for some desilting machines are also put forward.

  • PDF

A Study on the Forming and Evolution of Coastal Flood Origin Deposits at Gwangseungri Coast - Based on Burial Age and Chemical Analysis - (광승리 연안의 연안범람기원퇴적층 형성과 변화 과정에 대한 연구 - 퇴적물의 매몰연대와 화학분석을 기반으로 -)

  • Shin, Won Jeong;Yang, Dong Yoon;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.71-87
    • /
    • 2018
  • As part of further study on Gwangseungri coastal deposits which occurred at 10 ~ 15m above sea level and was analyzed as palaeo-coastal flood-type sediments, six burial ages of six additional samples from the two cross sections (KST1 and, KST2) near to the points of the past study were estimated and the geochemical analysis was performed. Further investigation on the cross section KST1 revealed a reversal of the burial age at the bottom of the section which was identified as palaeo-flooding sediments and supposed to have been buried about 350 years ago. At the lower part of the KST1, the burial age of the sediment layer was estimated to be 3,800 years. The lower part of KST2 sediments was identified as sediments that was formed about 6,600 years ago and about 20,000 years ago. Considering the inclination of the sediment layers, the coastal flooding sedimentsreported to have formed 700 years ago in the previousstudy are located at the top and the KST1 section analyzed in thisstudy seemed to be connected to the lower part. The chemical analysis showed that the relationship between these layers was not continuous but had a discontinuous characteristic influenced by a specific event, and the chemical composition also showed a rapid change. If we judge these together, the lowest part of Gwangseungrisediment layerseemed to have formed during the last glacial period but it was hard to find its origins clearly. On top of this layer, a fine sediment layer containing gravels was also formed.Itseemed thatsedimentation did not occur continuously, but was affected by temporary events in such a way that after a sediment layer was formed, it stopped. Since then, a coastal flooding event occurred about 700 years ago, and part of flooded sediments accumulated in the rear slope. After that, when a flood layer including additional granular materials about 350 years ago was formed, sedimentation along the slope seemed to have occurred.

A study on alluvial deposits of tributaries of Yungsan river, near Damyang. (담양지역 영산강 지류 하천 퇴적층의 특성에 대한 연구)

  • Kim, Jong Yeon;Hong, Se Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.51-70
    • /
    • 2013
  • The characteristics of deposits formed by the Daejon-cheon and Soobuk-cheon, dissecting the mountains such as Byungpung Mt. and Samin Mt. in western part of Damyang county, Jeonmam province. Results from field survey and bore hole logging by KIGAM are used in interpreting depositional environment, in this study. By the result of deposits near of the channels Daejon-cheon and Soobuk-cheon, and main channel of Youngsan River, the depth of sediment layers in this area is 4~7m, far thinner than formerly estimated. Weathered material of local rocks forms the base of the sedimentary layers. It can be assumed that the location channel of the Youngsan river has been stable ever since the start of the sedimentary events. Sediment particles of tributaries are angular than those of Youngsan River. Particles are larger and sorting is poor. It is interpreted as mount flash flood deposits. Main sources of sediments at the valley bottom or deposition dominated area are the terrace deposits or slope deposits over the gentle foot-slope or front of surrounding mountains. Some particles show polygonal cracking on the surface originated from the strong chemical weathering, while most of these has high angularity. It means various geomorphic processes operate to produce and transport the particles in this area.Isolated hills within the sedimentary plains are made with weathered materials of local bedrock. In the case of foot-slope of the hills, thin sedimentary layers are found. So it can be concluded that surface features of deposition zone of the Daejon-cheon and Soobuk-cheon is formed by the filling of lower part of the valley and its feature partly controlled by the relief of the weathering front.

Fluvial Deposits Distributed along the Seomjin River (섬진강 유역의 하성 퇴적층에 관한 연구)

  • You, Hoen-Su;Cho, Seok-Hee;Koh, Yeong-Koo
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.174-187
    • /
    • 2000
  • The Quaternary coarse-grained sandy sediments are distributed along the channels of Seomjin River. The fluvial sediments were sedimentologically studied in horizontal and vertical distributions. To analyze depositional environments and facies changes in the sediments, sediment sampling from river mouth to upper stream and desctriptive approaches to the sediment profiles outcropped near Kurye were carried out. The sediments along the stream lines of the river are assigned to very coarse to coarse sand in grain size. The sediment grains are widely scattered in sorting and moderately sorted in average. For skewness and kurtosis, the sediments ranges from very fine to very coarse skewed and from very lepto-kurtic to extremelyl epto-kurtic states, respectively. The sediments are divided into slightly gravelly sand, gravelly sand and sandy gravel in sediment type. The pain shape in the sandy sediments are dominant in equant and tabular forms showing wide varieties. The sandy sediments are mostly poorly sorted and are highly variable in surface texture with SEM. Some smaller grains in the sediments ordinarily show polished surfaces. Of those grains, quartz ones are commonly angular to surounded. On the basis of facies changes and sedimentary structures, outcropped fluvial sediment profiles in Kurye are classified into xGyS, mGyS, gGyS, xSM, xS, mS, mGyM, IgM in facies. These eight facies are reformed as facies assemblage I and ll. The facies assemblage I and II are interpreted as the products of the channel deposits in braided stream and flood plain ones besides channels, respectively. The change facies assemblage I with facies assemblage ll imply that depositional environments hadbeen migrated from braied sream to flood plain ones.

  • PDF

Analysis on the Sedimentary Environment Change Induced by Typhoon in the Sacheoncheon, Gangneung using Multi-temporal Remote Sensing Data (태풍 루사에 의한 강릉 사천천 주변 퇴적 환경 변화: 다중 시기 원격탐사 자료를 이용한 정보 분석)

  • Park, No-Wook;Jang, Dong-Ho;Chi, Kwang-Hoon
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.83-94
    • /
    • 2006
  • The objective of this paper is to extract and analyze the sediment environment change information in the Sachencheon, Gangneung, Korea that was seriously damaged as a result of typhoon Rusa aftermath early in September, 2002 using multi-temporal remote sensing data. For the extraction of change information, an unsupervised approach based on the automatic determination of thresholding values was applied. As the change detection results, turbidity changes right after typhoon Rusa, the decrease of wetlands, the increase of dry sand and channel width and changes of relative level in the stream due to seasonal variation were observed. Sedimentation in the cultivated areas and restoration works also affected the change near the Sacheoncheon. In addition to the change detection analysis, several environmental thematic maps including microtopographic map, distributions of estimated amount of flood deposits and flood hazard landform classification map were generated by using remote sensing and field survey data. In conclusion, multi-temporal remote sensing data can be effectively used for natural hazard analysis and damage information extraction and specific data processing techniques for high-resolution remote sensing data should also be developed.

The Development of the Hantan River Basin, Korea and the Age of the Sediment on the top of the Chongok Basalt (한탄강유역의 발달과정과 전곡현무암 위의 퇴적물의 연대)

  • Bae, Kidong
    • The Korean Journal of Quaternary Research
    • /
    • v.3 no.1
    • /
    • pp.87-101
    • /
    • 1989
  • The development of the Hantan river basin can be divided into three stages. The first stage include the ancient Hantan channel system prior to the Chongokni basalt which yield dates of about 0.6 mya from the K/Ar dating method. During this period the Baekuyri formation was formed. The Baekuyri formation is widely observed under the Chongokni basalt along the current river system. The second stage is the period when stream channels stayed on the top of the basalt plateau. Aggradation and deggradation were continued by meandering and braiding channel systems until major stream channel was formed. The currently remaining deposit on the top of the basalt was formed by lacustrine and fluvial systems in this period. During this period Pleistocene hominid was present on edge of water and flood plain and left Paleolithic material. This period was begun at the time of the final basalt flow dated about 300,000 BP. The third stage is designed for the time when the Hantan river channel was dropped down to a level from which the channel could not influence the top of the basalt any more No more deposit could be formed but erosion by surface water has been continued on the top of the basalt since then. The dropping of the Hantan river channel was probably not very long after the final flow of the basalt. Because of frost action and heavy concentrated precipitation in the basin area along with blocky and clumnar joint structure of the basalt, erosional process of the basalt is believed to have been carried out within a relatively short time. The lowering of the Hantan river channel was probably completed in a cycle of major fluctuation of world cimate. Also, the redclay on the top of the basalt is believed to have been formed during a warm period around 200,000 BP, which accords with the climatic change suggested above fair1y well. The Paleolithic materials in tile deposits fell accordingly into approximately same time period.

  • PDF