• Title/Summary/Keyword: seafloor image

Search Result 32, Processing Time 0.026 seconds

Sea-bottom Sediments and Seafloor Acoustic Image by Side Scan Sonar on Sindu-ri Offshore (신두리 해안 Side Scan Sonar 해저면 음향영상과 해저퇴적물)

  • Woo, Han-Jun;Lee, Yong-Kuk;Jeong, Kap-Sik;Je, Jong-Geel;Park, Gun-Tae;Jung, Baek-Hun;Cho, Jin-Hyung;Kim, Seong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.707-721
    • /
    • 2002
  • Seafloor acoustic image data using the side scan sonar system were gathered on the Sindu-ri offshore near the Taean peninsula, middle western Korea. The relationship between the back-scattering acoustic intensity and the sea-bottom sediment properties was studied. And these two data sets were compared and interpreted with the water depth, respectively. Most of sediment properties were correlated well to the acoustic intensity, however the distribution patterns of the sea-bottom sediment and the seafloor acoustic image were not similar to each other except the rocky bottom area. The water depth was not only influential on the distribution pattern of seafloor acoustic image but also showed a linear relation with the sediment properties distribution.

A Study of Improve on a Backscatter Data of Multibeam Echo-sounder Using Digital Image Processing (디지털 영상처리기법를 이용한 멀티빔 음향측심기의 음압자료 향상 연구)

  • Hye-Won Choi;Doo-Pyo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.133-141
    • /
    • 2023
  • Accurate measurement of seafloor topography plays a crucial role in developing marine industries such as maritime safety, resource exploration, environmental protection, and coastal management. The seafloor topography is constructed using side scan sonar (SSS) and single beam echosounder (SBES) or multibeam echosounder (MBES), which transmit and receive ultrasound waves through a device attached to a marine survey vessel. However, the use of a sonar system is affected by noise pollution areas, and the single beam has a limited scope of application. At the same time, the multibeam is mainly applicable for depth observation. For these reasons, it is difficult to determine the boundaries and areas of seafloor topography. Therefore, this study proposes a method to improve the backscatter data of multibeam echosounder, which has a relationship with the seafloor quality, by using digital image processing to classify the shape of the underwater surface.

The calibration of a laser profiling system for seafloor micro-topography measurements

  • Loeffler, Kathryn R.;Chotiros, Nicholas P.
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.195-205
    • /
    • 2011
  • A method for calibrating a laser profiling system for seafloor micro-topography measurements is described. The system consists of a digital camera and an arrangement of six red lasers that are mounted as a unit on a remotely operated vehicle (ROV). The lasers project as parallel planes onto the seafloor, creating profiles of the local topography that are interpreted from the digital camera image. The goal of the calibration was to determine the plane equations for the six lasers relative to the camera. This was accomplished in two stages. First, distortions in the digital image were corrected using an interpolation method based on a virtual pinhole camera model. Then, the laser planes were determined according to their intersections with a calibration target. The position and orientation of the target were obtained by a registration process. The selection of the target shape and size was found to be critical to a successful calibration at sea, due to the limitations in the manoeuvrability of the ROV.

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.

Absolute Sonar Position on Side Scan Sonar Data Processing (Side Scan Sonar 자료처리에서 수중예인체의 절대위치)

  • Lee, Yong-Kuk;Park, Gun-Tae;Suk, Bong-Chool;Jung, Baek-Hun;Kim, Seong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.467-476
    • /
    • 2003
  • For the seafloor acoustic image mapping of side scan sonar, the beginning step of the procedure is to fix the absolute sonar (tow-fish) position since the sonar is not hull mounted but towed astern. The technical algorithm used to calculate the actual sonar position without any other additional sub-system, i.e., the underwater acoustic position tracking system or the sonar attitude measuring device, was proposed. In the seafloor image mosaic mapping results using the sonar track (not ship track) developed in this study, any ambiguity or inconsistency of seafloor features was not found. The incidental effect from the sonar position determination procedure orients the towing direction of sonar to be smooth, consequently the swath pattern on the across-track direction becomes stable and the blanking phenomenon of the insonification area is reduced conspicuously. This technical method is considered to be an useful tool when applied toother underwater towing vehicle surveys.

Digital Processing and Acoustic Backscattering Characteristics on the Seafloor Image by Side Scan Sonar (Side Scan Sonar 탐사자료의 영상처리와 해저면 Backscattering 음향특성)

  • 김성렬;유홍룡
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.143-152
    • /
    • 1987
  • The digital data were obtained using Kennedy 9000 magnetic tape deck which was connected to the SMS960 side scan sonar during the field operations. The data of three consecutive survey tracks near Seongsan-po, Cheju were used for the development of this study. The softwares were mainly written in Fortran-77 using VAX 11/780 MINI-COMPUTER (CPU Memory; 4MB). The established mapping system consists of the pretreatment and the digital processing of seafloor image data. The pretreatment was necessary because the raw digital data format of the field magnetic tapes was not compatible to the VAX system. Therefore the raw data were read by the personal computer using the Assembler language and the data format was converted to IBM compatible, and next data were communicated to the VAX system. The digital processing includes geometrical correction for slant range, statistical analysis and cartography of the seafloor image. The sound speed in the water column was assumed 1,500 m/sec for the slant range correction and the moving average method was used for the signal trace smoothing. Histograms and cumulative curves were established for the statistical analysis, that was purposed to classify the backscattering strength from the sea-bottom. The seafloor image was displayed on the color screen of the TEKTRONIX 4113B terminal. According to the brief interpretation of the result image map, rocky and sedimentary bottoms were very well discriminated. Also it was shown that the backscattered acoustic pressurecorrelateswith the grain size and sorting of surface sediments.

  • PDF

Depth-based Correction of Side Scan Sonal Image Data and Segmentation for Seafloor Classification (수심을 고려한 사이드 스캔 소나 자료의 보정 및 해저면 분류를 위한 영상분할)

  • 서상일;김학일;이광훈;김대철
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.133-150
    • /
    • 1997
  • The purpose of this paper is to develop an algorithm of classification and interpretation of seafloor based on side scan sonar data. The algorithm consists of mosaicking of sonar data using navigation data, correction and compensation of the acouctic amplitude data considering the charateristics of the side scan sonar system, and segmentation of the seafloor using digital image processing techniques. The correction and compensation process is essential because there is usually difference in acoustic amplitudes from the same distance of the port-side and the starboard-side and the amplitudes become attenuated as the distance is increasing. In this paper, proposed is an algorithm of compensating the side scan sonar data, and its result is compared with the mosaicking result without any compensation. The algorithm considers the amplitude characteristics according to the tow-fish's depth as well as the attenuation trend of the side scan sonar along the beam positions. This paper also proposes an image segmentation algorithm based on the texture, where the criterion is the maximum occurence related with gray level. The preliminary experiment has been carried out with the side scan sonar data and its result is demonstrated.

Generating Stereoscopic Sonar Images by using Multibeam Data (멀티빔 자료를 이용한 실체 소나 이미지 구현)

  • Chung, Chul-Hoon;Kim, Jin-Hoo;Kim, Dong-Hwi;Kim, Sung-Bo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.199-200
    • /
    • 2006
  • This paper describes how to generate stereoscopic sonar images by using multibeam data. Both parallel and crossing methods were used to create stereoscopic vision of the seafloor. Stereoscopic sonar images might provide reality and more detailed information of the target and the seafloor topography.

  • PDF

Sunken Ship Precision Image Analysis Using Multi-Beam Echo Sounding Data (다중빔음향측심 자료를 이용한 침몰선박 정밀영상 분석 연구)

  • Lee, Seung-Hyun;Seo, Young Kyo;Suh, Jae-Joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.863-868
    • /
    • 2016
  • In this study, the precise shapes of sunken ships and information on seafloor topography were analyzed using data obtained from a multi-beam echo sounder. The state of each sunken ship was analyzed by processing diverse imagery data which was compared with data obtained from past investigations to determine changes in the state and circumjacent seafloor topography. Apparent changes in the seafloor topography around one sunken ship, the "Pacific Friend", were found from stern to bow as a result of continued submarine erosion and sedimentation. In the case of sunken ship "No. 7 Haeseong", the partial collapse of the bow was revealed in the seabed images captured in 2015, though it had still been intact in images captured during the Korea Hydrographic and Oceanographic Agency's investigation in 2011. This partial collapse was presumed to have resulted from the effects of continued tidal currents, the cargo load of the ship and continued corrosion of the ship over a long time on the seabed. Continuous monitoring of residual fuel inside the ship is necessary to avoid leakage and potential marine pollution. By conducting image analysis on these sunken ships, it has been determined that the structural safety of the ships is seriously influenced by tidal currents and seafloor topography, while the hulls will be continuously changed by corrosion. As a result, it can be concluded that the development of prediction and response techniques that take into consideration residual fuel leakage and environmental changes according to the geological characteristics of sunken ships is necessary.

A Study on Fusion and Visualization using Multibeam Sonar Data with Various Spatial Data Sets for Marine GIS

  • Kong, Seong-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.407-412
    • /
    • 2010
  • According to the remarkable advances in sonar technology, positioning capabilities and computer processing power we can accurately image and explore the seafloor in hydrography. Especially, Multibeam Echo Sounder can provide nearly perfect coverage of the seafloor with high resolution. Since the mid-1990's, Multibeam Echo Sounders have been used for hydrographic surveying in Korea. In this study, new marine data set as an effective decision-making tool in various fields was proposed by visualizing and combining with Multibeam sonar data and marine spatial data sets such as satellite image and digital nautical chart. The proposed method was tested around the port of PyeongTaek-DangJin in the west coast of Korea. The Visualization and fusion methods are described with various marine data sets with processing. We demonstrated that new data set in marine GIS is useful in safe navigation and port management as an efficient decision-making tool.