DOI QR코드

DOI QR Code

인산가용화 활성을 갖는 바실러스 서브틸리스 HR-1019 분리와 특성

Isolation and Characterization of a Novel Bacterium, Bacillus subtilis HR-1019, with Insoluble Phosphates Solubilizing Activity

  • Lee, Yong-Suk (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Park, Dong-Ju (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Jae Hoon (Haerim Pharmetic LTD.) ;
  • Kim, Hyeong Seok (Haerim Pharmetic LTD.) ;
  • Choi, Yong-Lark (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University)
  • 투고 : 2012.11.29
  • 심사 : 2013.01.25
  • 발행 : 2013.02.28

초록

본 연구의 목적은 우수한 미생물 제제 개발용 인산염 가용화 균주의 개발이다. 경작지 토양에서 분리한 인산염 가용화 균주의 특성 및 16S rDNA 염기서열을 조사한 결과 Bacillus subtilis HR-1019로 동정되었다. Bacillus subtilis HR-1019는 hydroxyapatite, tri-calcium phosphate 및 aluminum phosphate 3가지의 난용성 인산염을 모두 가용화하였다. 난용성 인산염의 분해능이 최대가 되는 배양온도는 $37^{\circ}C$이었으며, 배양초기 pH가 5.0이었다. 탄소원으로 glucose를 5% 첨가시 가용화능이 높았으며, 가용화된 유리인산의 함량이 증가함에 따라 pH가 크게 감소하였다. 분리균주 HR-1019가 식물병원균에 대하여 균의 생육을 저지하는 clear zone 확인으로 항균효과를 확인하였다.

The objective of this study was to develop a mineral phosphate-solubilizing bacterium as a biofertilizer. A mineral phosphate-solubilizing bacterium HR-1019 was isolated from cultivated soils. It was identified as Bacillus subtilis by 16S rDNA analysis. The phosphate-solubilizing activities of the HR-1019 strain against three types of insoluble phosphate, hydroxyapatite, tri-calcium phosphate, and aluminum phosphate were quantitatively determined. When 5% of glucose concentration was used as a carbon source, the strain showed marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to pH drop in the culture solution of the strain. The pathogenic activity and antifungal effects of the HR-1019 strain were measured inclear zones formed in PDA media.

키워드

참고문헌

  1. Agasimani, C., Mudlagiriyappa, A. and Sreenivasa, M. N. 1994. Response of groundnut to phosphate solubilizing microorganisms. Groundnut News 6, 5-8.
  2. Dubey, S. K. and Billore, S. D. 1992. Phophate solubilizing microorganism (PSM) as inoculant their role in augmenting crop productivity India-A review. Crop Res Hisar 5, 11-17.
  3. Goldstein, A. H. 1986. Bacterial mineral phosphate solubilization: Historlcal perspective and futer prospects. Am J Altern 1, 57-65.
  4. Illmer, P., Barbato, A. and Schinner, F. 1995. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27, 265-270. https://doi.org/10.1016/0038-0717(94)00205-F
  5. Illmer, P. and Schinner, F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology Biochem 24, 389-395 https://doi.org/10.1016/0038-0717(92)90199-8
  6. Illmer, P. and Schinner, F. 1995. Solubilization of inorganic calcium phosphate-solubilization mechanisms. Soil Biol Biochem 27, 257-263. https://doi.org/10.1016/0038-0717(94)00190-C
  7. Joo, W. H., Han, S. J., Choi, Y. L. and Jeong, Y. K. 2004. Antifungal compound produced by Bacillus sp. TBM912. J Life Sci 14, 193-197 https://doi.org/10.5352/JLS.2004.14.1.193
  8. Kang, S. C. and Choi, M. C. 1999. Solid culture of phosphate - solubilizing fungus, Penicillium sp. PS - 113. Korean J Appl Microbiol Biotechnol 27, 1-7.
  9. Kim, K. K., Kim, K. H., Moon, S. S. and Kang, K. Y. 1997. Isolation and structure identification of antifungal substance from Aspergillus tereus. Agric Chem Biotechnol 40, 593-596.
  10. Kucey, R. M. N. 1988. Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheal. Can J Soil Sci 68, 261-270. https://doi.org/10.4141/cjss88-026
  11. Paul, E. A. and Clark, F. E. 1989. Soil Microbiology and Biochemistry: Academic Press, New York, U.S.A.
  12. Raj, J., Bagyaraj, D. J. and Manjunath, A. 1981. Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and 32P uptake. Soil Biol Biochem 13, 105-108. https://doi.org/10.1016/0038-0717(81)90004-3
  13. Sayer, J. A., Raggett, S. L. and Gadd, G. M. 1995. Solubilization of insoluble metal compounds by soil fungi: Development of a screening method for solubilizing ability and metal tolerance. Mycological Res 99, 987-991. https://doi.org/10.1016/S0953-7562(09)80762-4
  14. Son, H. J., Park, G. T., Cha, M. S. and Her, M. S. 2006. Solubilization of insoluble inorganic phosphate by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Biores Biotechnol 97, 204-210. https://doi.org/10.1016/j.biortech.2005.02.021
  15. Song, O. R., Lee, S. J., Kim, S. H.., Chung, S. Y., Cha, I. H. and Choi, Y. L. 2001. Isolation and cultural characteristics phosphate solubilization bacterium, Aeromonas hydrophyla DA57. J Korean Soc Agric Chem Biotechnol 44, 257-261.
  16. Song, O. R., Lee, S. J., Lee, Y. S., Lee, S. C., Kim, K. K. and Choi, Y. L. 2008. Solubilization of insolubile inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian J Microbiol 39, 1-6. https://doi.org/10.1590/S1517-83822008000100001
  17. Suh, J. S., Lee, S. K., Kim, K. S. and Seong, K. Y. 1995. Solubilization of insoluble phosphates by Pseudomonas putida, Penicillium sp. and Aspergillus niger isolated from Korean soils. J Korean Soc Soil Sci Fert 28, 278-286.
  18. Tiwari, V. N., Pathak, A. N. and Lehri, L. K. 1993. Rock phosphate-superphosphate in wheat in relation to inoculation with phosphate solubilizing organism and organic waste. Ind J Agr Res 27, 137-145.
  19. Varsha, N., Jugnu, T. and Patel, H. H. 1995. Mineral posphate solubilization by Aspergillus aculeatus. Ind J Exp Biol 33, 91-93.

피인용 문헌

  1. Growth of Creeping Bentgrass by Application of Compound Fertilizer Containing Microbes vol.5, pp.1, 2016, https://doi.org/10.5660/WTS.2016.5.1.42
  2. Determination of Mass Culture Method of Marine-derived Micro Organism, Bacillus sp. 2-4 (KCCMI 11107P) with Antimicrobial Acitivity vol.30, pp.1, 2018, https://doi.org/10.13000/JFMSE.2018.02.30.1.123