DOI QR코드

DOI QR Code

A Study on the Optimization of Heat Dissipation in Flip-chip Package

플립칩 패키지의 열소산 최적화 연구

  • Park, Chul Gyun (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Lee, Tae Ho (The Institute of Opto-Mechatronics, Pusan National University) ;
  • Lee, Tae Kyoung (Samsung Electro-mechanics Co., Ltd.) ;
  • Jeong, Myung Yung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 박철균 (부산대학교 인지메카트로닉스공학과) ;
  • 이태호 (부산대학교 광메카트로닉스연구소) ;
  • 이태경 (삼성전기) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2013.09.04
  • Accepted : 2013.09.27
  • Published : 2013.09.30

Abstract

According to advance of electronic packaging technology, electronic package becomes smaller. Miniaturization of package causes the temperature rise of package. This can degrade life of electronic device and generate the failure of electronic system. In this study, we proposed a new semi-embedded structure with micro pattern for maximizing heat dissipation. A proposed structure showed the characteristics which have maximum temperature lower than $20^{\circ}C$ compared with conventional structure. And also, in view of thermal stress and strain, our structure showed a remarkably low value compared with other ones. We expect that the new structure proposed in this work can be applied to an flip-chip package of the future.

전자패키징 기술의 발전에 따라 패키지의 소형화는 집적화에 따른 열 소산 면적 감소로 인하여 패키지의 온도 상승을 초래한다. 온도 상승은 소자의 성능을 저해하여, 시스템 고장을 발생을 유발시키며 수명을 단축시킨다. 본 연구에서는 마이크로 패턴과 세미 임베디드 구조를 결합하여 열 소산을 극대화 시킬 수 있는 새로운 구조를 제안하여 열특성을 평가하였다. 제안 구조의 열특성 평가 결과, 기존 구조에 비하여 최대 온도는 $20^{\circ}C$낮았으며, 범프의 최대 응력은 20%이상 감소하여 제안 구조의 유효성을 확인하였다.

Keywords

References

  1. C. F. Coombs, "Printed Circuits Handbook", sMcGraw Hill Book Co., Chap.3, (2007).
  2. Y. Song, S. B. Lee, S. H. Jeon, B. S. Yim, H. S. Chung and J. M. Kim "Underfill Flow Characteristics for Flip-Chip Packaging", J. Microelectron. Packag. Soc.,16(3), 39 (2009).
  3. J. H. Ann, K. S. Kim, Y. C. Lee, Y. Kim and S. B. Jung "Regulation in Shear Test Method for BGA of Flip-chip Package", J. Microelectron. Packag. Soc., 17(3), 1 (2010).
  4. J.U. Knickerbocker, et al., "three-dimensional silicon integration", IBM Journal of Research and Development, 52(6), 553- 569, (2008). https://doi.org/10.1147/JRD.2008.5388564
  5. Sakuma, K. et al, "Characterization of Stacked Die using Dieto- Wafer Intergration for High Yield and Throughput", Proc 58th Electronic Components and Technology Connf, Orlando, FL, pp. 18-23 (2008).
  6. JHwang et al., "Fine pitch chip interconnection technology for 3D integration", Electronic Components and Technology Conference (ECTC), pp. 1399-1403 (2010).
  7. Y. C. Chiou, Y. M. Jen, S H Huang, "Finite element based fatigue life estimation of the solder joints with effect of intermetallic compound growth", Microelectronics Reliability 2319-2329, 51 (2011). https://doi.org/10.1016/j.microrel.2011.06.025
  8. C. Y. H. Lu, "Growth Mechanism of the Cathode IMC Layer in Solder Bump Joints", Transactions of JWRI, Special Issue on WSE2011 (2011).
  9. M. Huang, L. Chen, S. Zhou, S. Ye, "Effect of surfacce finish (OSP and ENEPIG) on Failure mechanism induced by electromigration in Sn-3.0Ag-0.5Cu flip chip solder interconnect", APM2011 (2011).
  10. A. Qasaimeh, S. Lu, P. Borgesen, "Crack Evolution and Rapid Life Assessment for Lead Solder Joints", Electronic Components and Technology Conference (2011).
  11. C. G. Song, S. H. Choa, "Numerical Study of Warpage and Stress for the Utra Thin Package", J. Microelectron. Package. Soc., 17(4), 49(2010).
  12. M. O. Alam ,H. Lu, C. Bailey, Y. C. Chan, "Finite-element simulaation of stress intensity factors in solder joint intermetallic compounds", IEEE Trans Device Mater Ral, 9, 40(2011).
  13. Y. M. Jen, Y. C. Chiou ,C. L. Yu, "Fracture mechanics study on the intermetallic compound cracks for the solder joints of electronic packages.", Eng Fail Anal, 18, 797 (2011). https://doi.org/10.1016/j.engfailanal.2010.12.026
  14. Nguyen, T.T., D. Lee, J. B. Kwak, S. Park, "Effects of glue on reliability of flip chip BGA packages under thermal cycling", Microelectronics Reliability, 50(7), 1000 (2010). https://doi.org/10.1016/j.microrel.2010.04.003

Cited by

  1. Characterization of Copper-Graphite Composites Fabricated via Electrochemical Deposition and Spark Plasma Sintering vol.9, pp.14, 2013, https://doi.org/10.3390/app9142853