DOI QR코드

DOI QR Code

Critical Temperature for Inter-Laminar Shear Strength and Effect of Exposure Time of FRP Rebars

FRP 보강근의 계면전단강도에 대한 임계온도와 노출시간의 영향

  • 문도영 (경성대학교 토목공학과)
  • Received : 2012.08.04
  • Accepted : 2012.10.25
  • Published : 2013.02.28

Abstract

Short beam tests of GFRP and CFRP specimens exposed to high temperature were conducted to measure the inter-laminar shear strength. For the phase I test, the exposure time and temperature were varied to measure reduction in the strength due to the applied conditions. As a results, the critical temperature was found to $270^{\circ}C$ for the both FRP reinforcements. The high temperature, which causes 50% loss of inter-laminar shear strength, is defined as the critical temperature in this study. It should be noted that the critical temperature for the inter-laminar shear strength is mainly dependent on resin properties not on fiber type. In the phase II test, the effect of exposure time was investigated at intervals of 0.25hour for the critical temperature. All test results demonstrate that the exposure time effect is not significant compared to the maximum exposure temperature, but it is not negligible and, moreover, is significant at the critical temperature.

고온에 노출된 GFRP와 CFRP 보강근의 단지간보 실험을 통해 계면전단강도를 측정하였다. 1차 실험으로서, 노출시간과 온도를 변수로 하였으며, 적용된 고온 조건하에서 강도의 변화를 고찰하였으다. 1차 실험의 결과로부터 두가지 보강근에 대하여 임계온도가 $270^{\circ}C$로 동일한 것을 확인하였다. 이 연구에서 임계온도는 상온에서의 계면전단강도의 50%의 손실을 발생시키는 온도로 정의하였다. 계면전단강도에 대한 임계온도는 섬유의 종류가 아닌 레진이 성능에 지배된다는 것이다. 2차 실험에서는 임계온도하에서 0.25시간의 간격으로 노출시간에 대한 영향을 고찰하였다. 모든 실험 결과로부터, 노출시간의 영향은 노출온도에 비하여 그 영향이 크진 않지만 무시할 정도는 아닌 것으로 나타났다. 더욱이, 그 영향은 임계온도하에서 매우 중대함을 확인하였다.

Keywords

References

  1. Wang, Y. C. and Kodur, V. K. R., "Variation of Strength and Stiffness of Fibre Reinforced Polymer Reinforcing Bars with Temperature," Cement and Concrete Composites, Vol. 27, Issues 9-10, 2005, pp. 864-874. (doi: http://dx. doi.org/10.1016/j.cemconcomp.2005.03.012)
  2. Blontrock, H., Taerwe, L., and Matthys, S., "Properties of Fiber Reinforced Plastics at Elevated Temperatures with Regards to Fire Resistance of Reinforced Concrete Members," In: Fourth International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Baltimore, American Concrete Institute, 1999, pp. 43-54.
  3. Saafi, M., "Effect of Fire on FRP Reinforced Concrete Members," Composite Structures, Vol. 58, Issue 1, 2002, pp. 11-20. (doi: http://dx.doi.org/10.1016/S0263-8223(02)00045-4)
  4. Bisby, L. A. and Kodur, V. K. R., "Evaluating The Fire Endurance of Concrete Slabs Reinforced with FRP Bar: Considerations for a Holistic Approach," Composites: Part B, Vol. 38, No. 5-6, 2007, pp. 547-558. (doi: http://dx.doi.org/10.1016/j.compositesb.2006.07.013)
  5. Robert, M. and Benmokrane, B., "Behavior of GFRP Reinforcing Bars Subjected to Extreme Temperature," Journal of Composites for Construction, ASCE, Vol. 14, No. 4, 2010, pp. 353-360. (doi: http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000092)
  6. Moon, D. Y. and Oh, H. S., "The Combined Effect of Concrete Environment and High Temperature on Interlaminar Shear Strength of FRP Reinforcement," Journal of the Korea Concrete Institute, Vol. 23, No. 6, 2011, pp. 749-756. https://doi.org/10.4334/JKCI.2011.23.6.749
  7. Oh, H. S. and Moon, D. Y., "A Degradation Characteristic of FRP Rebars Attacked by Combined Environmental Factors," Journal of the Korea Institute for Structural Maintenance Inspection, Vol. 16, No. 3, pp. 1-10.
  8. Ai-Zaherani, M. M., Al-Dulaijan, S. U., Al-Idi, S. H., and Ai-Mehthel, M. H., "High Temperature Effect on Tensile Strength of GFRP Bars and Flexural Behavior of GFRP Reinforced Concrete Beams," FRPRCS-8, Patras, Greece, 2007.
  9. Moon, D. Y., "Simplified Evaluation Method for Residual Bond Strength of Reinforced Concrete Using Standard Fire Curve," Journal of Korean Society of Hazard Mitigation, Vol. 10, No. 5, 2010, pp. 41-47.
  10. ASTM D 4475-2, Standard Test Method for Apparent Horizontal Shear Strength of Pultruded Reinforced Plastic Rods by the Short-Beam Method, ASTM International, PA, 2008, pp. 1-4.

Cited by

  1. Bond Capacity of Near-Surface-Mounted CFRP Plate to Concrete Under Various Temperatures vol.17, pp.4, 2013, https://doi.org/10.11112/jksmi.2013.17.4.075
  2. Prediction of Long-term Residual Inter-laminar Shear Strength of Thermally Damaged GFRP Rebar vol.18, pp.3, 2014, https://doi.org/10.11112/jksmi.2014.18.3.108
  3. Evaluation on the Thermal Resistance Capacity of Fire Proof Materials for Improving Fire Resistance of Near-Surface-Mounted FRP in Concrete vol.18, pp.5, 2014, https://doi.org/10.11112/jksmi.2014.18.5.051