DOI QR코드

DOI QR Code

Quantitative Analysis of Growth of Cells on Physicochemically Modified Surfaces

  • Chandra, Prakash (Department of Chemistry, Kongju National University) ;
  • Kim, Jihee (Department of Chemistry, Kongju National University) ;
  • Rhee, Seog Woo (Department of Chemistry, Kongju National University)
  • Received : 2012.10.09
  • Accepted : 2012.11.19
  • Published : 2013.02.20

Abstract

In this study, we describe the most expected behavior of cells on the modified surface and the correlation between the modified substrates and the response of cells. The physicochemical characteristics of substrates played an essential role in the adhesion and proliferation of cells. Glass and polymer substrates were modified using air plasma oxidation, and the surfaces were coated with self-assembled monolayer molecules of silanes. The PDMS substrates embedded with parallel micropatterns were used for evaluation of the effect of topologically modified substrate on cellular behaviour. BALB/3T3 fibroblast cells were cultured on different surfaces with distinct wettability and topology, and the growth rates and morphological change of cells were analyzed. Finally, we found the optimum conditions for the adhesion and proliferation of cells on the modified surface. This study will provide insight into the cell-surface interaction and contribute to tissue engineering applications.

Keywords

References

  1. Ratner B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J, In Biomaterials Science: An Introduction to Materials in Medicine; 2nd Edition, Elsevier, California, 2004.
  2. Ruoslahti, E. Annu. Rev. Cell Dev. Biol. 1996, 12, 697. https://doi.org/10.1146/annurev.cellbio.12.1.697
  3. LeBaron, R. G.; Athanasiou, K. A. Tissue Eng. 2000, 6, 85. https://doi.org/10.1089/107632700320720
  4. Boateng, S. Y.; Lateef, S. S.; Mosley, W.; Hartman, T. J.; Hanley, L.; Russell, B. Am. J. Physiol. Cell. Physiol. 2005, 288, C30.
  5. van Wachem, P. B.; Beugeling, T.; Feijen, J.; Bantjes, A.; Detmers, J. P.; van Aken, W.G. Biomaterials 1985, 6, 403. https://doi.org/10.1016/0142-9612(85)90101-2
  6. van Wachem, P. B.; Hogt, A. H.; Beugeling, T.; Feijen, J.; Bantjes, A.; Detmers, J. P.; van Aken, W. G. Biomaterials 1987, 8, 323. https://doi.org/10.1016/0142-9612(87)90001-9
  7. Arima, Y.; Iwata, H. Biomaterials 2007, 28, 3074. https://doi.org/10.1016/j.biomaterials.2007.03.013
  8. Balcells, M.; Edelman, E. R. J. Cell. Physiol. 2002, 191, 155.
  9. van Kooten, T. G.; Spijker, H. T.; Busscher, H. J. Biomaterials 2004, 25, 1735. https://doi.org/10.1016/j.biomaterials.2003.08.071
  10. Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C. Mater. Sci. Eng. C 2003, 23, 551. https://doi.org/10.1016/S0928-4931(03)00033-X
  11. Ponche, A.; Bigerelle, M.; Anselme, K. Proc. IMechE, Part H: J. Eng. Med. 2010, 224, 1471. https://doi.org/10.1243/09544119JEIM900
  12. Anselme, K.; Ponche, A.; Bigerelle, M.; Anselme, K. Proc. IMechE, Part H: J. Eng. Med. 2010, 224, 1487.
  13. Refai, A. K.; Textor, M.; Brunette, D. M.; Waterfield, J. D. J. Biomed. Mater. Res. 2004, 70A, 194. https://doi.org/10.1002/jbm.a.30075
  14. Andrade, J. D. In Surface and Interfacial Aspects of Biomedical Polymers: Protein Adsorption; Andrade, J. D. Ed.; Plenum Press: New York, 1985, Vol 2; p1.
  15. Horbett, T. A.; Brash, J. L. In Proteins at Interfaces: Physiochemical and Biochemical Studies; Brash, J. L.; Horbett, T. A. Ed.; ACS Symposium Series 343, Washington, D.C., 1987; p 1.
  16. Miyamoto, A.; Teramoto, H.; Coso, O. A.; Gutkind, J. S.; Burbelo, P. D.; Akiyama, S. K.; Yamada, K. M. J. Cell Biol. 1995, 131, 791. https://doi.org/10.1083/jcb.131.3.791
  17. Streuli, C. H. J. Cell Sci. 2009, 122, 171. https://doi.org/10.1242/jcs.018945
  18. Lee, J. H.; Lee, J. W.; Khang, G.; Lee, H. B. Biomaterials 1997, 18, 351. https://doi.org/10.1016/S0142-9612(96)00128-7
  19. Lee, J. H.; Khang, G.; Lee, J. W.; Lee, H. B. J. Colloid Interf. Sci. 1998, 205, 323. https://doi.org/10.1006/jcis.1998.5688
  20. Baxter, L. C.; Frauchiger, V.; Textor, M.; ap Gwynn, I.; Richards, R. G. Eur. Cell. Mater. 2002, 4, 1.
  21. Mahto, S. K.; Yoon, T. H.; Shin, H.; Rhee, S. W. Biomed. Microdevices 2009, 11, 401. https://doi.org/10.1007/s10544-008-9246-8
  22. Rhee, S. W.; Taylor, A. M.; Tu, C. H.; Cribbs, D. H.; Cotman, C. W.; Jeon, N. L. Lab Chip 2005, 5, 102. https://doi.org/10.1039/b403091e
  23. Harnett, E. M.; Alderman, J.; Wood, T. Colloids Surf. B: Biointerfaces, 2007, 55, 90. https://doi.org/10.1016/j.colsurfb.2006.11.021
  24. Rebiscoul, D.; Perrut, V.; Renault, O.; Rieutord, F.; Olivier, S.; Haumesser, P.-H. J. Supercritical Fluids, 2009, 51, 287. https://doi.org/10.1016/j.supflu.2009.08.008
  25. Manifar, T.; Rezaee, A.; Sheikhzadeh, M.; Mittler, S. Appl. Surf. Sci. 2008, 254, 4611. https://doi.org/10.1016/j.apsusc.2008.01.100
  26. Xue, C.-Y.; Chin, S. Y.; Khan, S. A.; Yang, K.-L. Langmuir 2010, 26, 3739. https://doi.org/10.1021/la902995j
  27. Eddington, D. T.; Puccinelli, J. P.; Beebe, D. J. Sens. Actuators B 2006, 114, 170. https://doi.org/10.1016/j.snb.2005.04.037
  28. Hillborgl, H.; Gedde, U. W. IEEE Trans. on Dielectrics and Electrical Insulation, 1999, 6, 703. https://doi.org/10.1109/94.798127
  29. Wood, A. J. Cell Sci. 1988, 90, 667.
  30. Gerecht, S.; Bettinger, C. J.; Zhang, Z.; Borenstein, J.; Vunjak- Novakovic, G.; Langer, R. Biomaterials 2007, 28, 4068. https://doi.org/10.1016/j.biomaterials.2007.05.027
  31. Dalby, M. J. Int. J. Nanomedicine 2007, 2, 373.
  32. Dalby, M. J. Med. Eng. Phys. 2005, 27, 730. https://doi.org/10.1016/j.medengphy.2005.04.005
  33. Liao, L.; Jaken, S. Cell Growth Diff. 1993, 4, 309.
  34. Lee, K.; Song, K. Cell Cycle 2007, 6, 1487.
  35. Walboomers, X. F.; Croes, H. J. E.; Ginsel, L. A.; Jansen, J. A. Biomaterials 1998, 19, 1861. https://doi.org/10.1016/S0142-9612(98)00093-3
  36. den Braber, E. T.; de Ruijter, J. E.; Ginsel, L. A.; von Recum, A. F.; Jansen, J. A. Biomaterials 1996, 17, 2037. https://doi.org/10.1016/0142-9612(96)00032-4
  37. Wang, J. H.-C.; Grood, E. S.; Florer, J.; Wenstrup, R. J. Biomech. 2000, 33, 729. https://doi.org/10.1016/S0021-9290(00)00013-0

Cited by

  1. Measurement of cell-substrate impedance and characterization of cancer cell growth kinetics with mathematical model vol.16, pp.8, 2015, https://doi.org/10.1007/s12541-015-0242-7
  2. Fabrication and Application of Photocrosslinked, Nanometer-Scale, Physically Adsorbed Films for Tissue Culture Regeneration vol.17, pp.2, 2017, https://doi.org/10.1002/mabi.201600175