DOI QR코드

DOI QR Code

Purity Assessment of Organic Reference Materials with a Mass Balance Method: A Case Study of Endosulfan-II

  • Kim, Seung-Hyun (Division of Metrology for Quality Life Korea Research Institute of Standards and Science) ;
  • Lee, Joonhee (Division of Metrology for Quality Life Korea Research Institute of Standards and Science) ;
  • Ahn, Seonghee (Division of Metrology for Quality Life Korea Research Institute of Standards and Science) ;
  • Song, Young-Sin (Division of Metrology for Quality Life Korea Research Institute of Standards and Science) ;
  • Kim, Dong-Kyum (Division of Metrology for Quality Life Korea Research Institute of Standards and Science) ;
  • Kim, Byungjoo (Division of Metrology for Quality Life Korea Research Institute of Standards and Science)
  • Received : 2012.09.12
  • Accepted : 2012.11.19
  • Published : 2013.02.20

Abstract

A mass balance method established in this laboratory was applied to determine the purity of an endosulfan-II pure substance. Gas chromatography-flame ionization detector (GC-FID) was used to measure organic impurities. Total of 10 structurally related organic impurities were detected by GC-FID in the material. Water content was determined to be 0.187% by Karl-Fischer (K-F) coulometry with an oven-drying method. Non-volatile residual impurities was not detected by Thermal gravimetric analysis (TGA) within the detection limit of 0.04% (0.7 ${\mu}g$ in absolute amount). Residual solvents within the substance were determined to be 0.007% in the Endosulfan-II pure substance by running GC-FID after dissolving it with two solvents. The purity of the endosulfan-II was finally assigned to be ($99.17{\pm}0.14$)%. Details of the mass balance method including interpretation and evaluating uncertainties of results from each individual methods and the finally assayed purity were also described.

Keywords

References

  1. De Bivère, P.; Taylor, P. D. P. Metrologia 1997, 34, 67. https://doi.org/10.1088/0026-1394/34/1/10
  2. De Bivere, P. Int. J. Environ. Anal. Chem. 1993, 52, 1. https://doi.org/10.1080/03067319308042843
  3. Amigo, J. M.; Arana, G.; Etxebarria, N.; Fernández, L. A. Tr. Anal. Chem. 2004, 23, 80. https://doi.org/10.1016/S0165-9936(04)00109-8
  4. Pauwels, J.; Lamberty, A. Fresenius J. Anal. Chem. 2001, 370, 111. https://doi.org/10.1007/s002160100827
  5. BIPM, Primary calibrators and comparisons for organic analysis, http://www.bipm.org/en/scientific/chem/organic_analysis/
  6. American Society for Testing and Materials (ASTM) International, Standard Test Method for Purity by Differential Scanning Calorinmetry, E 928-08, ASTM International, West Conshohocken, PA, USA, 2008.
  7. Krska, R.; Schubert-Ullrich, P.; Josephs, R. D.; Emteborg, H.; Buttinger, G.; Pettersson, H.; van Egmond, H. P.; Schothorst, R. C.; MacDonald, S.; Chan, D. Anal. Bioanal. Chem. 2007, 3858, 1215.
  8. Yip, Y.-C.; Wong, S.-K.; Choi, S.-M. Tr. Anal. Chem. 2011, 30, 628. https://doi.org/10.1016/j.trac.2010.12.003
  9. Rizzo, V.; Pinciroli, V. J. Pharm. Biomed. Anal. 2005, 38, 851.
  10. Al Deen, T. S.; Hibbert, D. B.; Hook, J. M.; Wells, R. J. Anal. Chim. Ac. 2002, 474, 125. https://doi.org/10.1016/S0003-2670(02)01017-6
  11. Malz, F.; Jancke, H. J. Pharm. Biomed. Anal. 2005, 38, 813. https://doi.org/10.1016/j.jpba.2005.01.043
  12. Duewer, D. L.; Parris, R. M.; White, E.; May, W. E.; Elbaum, H. NIST Special Publication 1012, An approach to the metrogically sound traceable assessment of the chemical purity of organic referecne materials 2004.
  13. Ishikawa, K.; Hanari, N.; Shimizu, Y.; Ihara, T.; Nomura, A.; Numata, M.; Yarita, T.; Kato, K.; Chiba, K. Accred. Qual. Assur. 2011, 16, 311. https://doi.org/10.1007/s00769-011-0767-0
  14. Yazgan, S.; Bernreuther, A.; Ulberth, F.; Isengard, H.-D. Food Chem. 2006, 96, 411. https://doi.org/10.1016/j.foodchem.2005.05.065
  15. Le Goff, T.; Wood, S. Analy. Bioanal. Chem. 2008, 391, 2035. https://doi.org/10.1007/s00216-008-2048-2
  16. Caride, A.; Lafuente, A.; Cabaleiro, T. Toxicol. Lett. 2010, 197, 106. https://doi.org/10.1016/j.toxlet.2010.05.006
  17. Weber, J.; Halsall, C. J.; Muir, D.; Teixeira, C.; Small, J.; Solomon, K.; Hermanson, M.; Hung, H.; Bidleman, T. Sci. Total Environ. 2010, 408, 2966. https://doi.org/10.1016/j.scitotenv.2009.10.077
  18. Peyre, L.; Zucchini-Pascal, N.; de Sousa, G.; Rahmani, R. Toxicol. 2012, 300, 19. https://doi.org/10.1016/j.tox.2012.05.008
  19. Duewer, D. L.; Parris, R. M.; V, E. W.; May, W. E., Eds.; H. E. In Duewer, D. L., Parris, R. M., White, E., V, May, W. E., Elbaum, H., Eds.; ST Special Publication 1012: An approach to the metrologically sound traceable assessment of the chemical purity of organic reference materials, NIST, Gaithersburg, MD, USA, 2004.; NIST Special Publication 1012: 2004.
  20. Yazgan, S.; Bernreuther, A.; Ulberth, F.; Isengard, H. D. Food Chem. 2006, 96, 411. https://doi.org/10.1016/j.foodchem.2005.05.065
  21. International Organisation for Standardisation (ISO). Guide to the expression of uncertainty in measurement, 1995.

Cited by

  1. The development of an efficient mass balance approach for the purity assignment of organic calibration standards vol.407, pp.26, 2015, https://doi.org/10.1007/s00216-015-8971-0
  2. Metrological approaches to organic chemical purity: primary reference materials for vitamin D metabolites vol.407, pp.28, 2015, https://doi.org/10.1007/s00216-015-9013-7
  3. Characterization and Uncertainty Assessment of a Certified Reference Material of Chloramphenicol in Methanol (GBW(E)082557) vol.2016, pp.1687-8779, 2016, https://doi.org/10.1155/2016/2348257
  4. Development of an Arsenobetaine Standard Solution with Metrological Traceability to the SI by an Arsenic-specific Mass Balance Method vol.38, pp.2, 2017, https://doi.org/10.1002/bkcs.11072
  5. Effect of irradiation for sterilization on beverage reference materials for the analysis of food additives pp.1432-0517, 2018, https://doi.org/10.1007/s00769-018-1359-z
  6. Production of certified reference materials for the sports doping control of the REV-ERB agonist SR9009 pp.19427603, 2019, https://doi.org/10.1002/dta.2485
  7. Mass Balance Method for Purity Assessment of Organic Reference Materials: for Thermolabile Materials with LC-UV Method vol.35, pp.11, 2013, https://doi.org/10.5012/bkcs.2014.35.11.3275
  8. Comprehensive certification of a testosterone calibration standard facilitating the investigation of charged aerosol detection for the quantification of impurities of related structure vol.56, pp.2, 2013, https://doi.org/10.1088/1681-7575/ab0cbb
  9. Establishment of measurement traceability for peptide and protein quantification through rigorous purity assessment—a review vol.56, pp.4, 2013, https://doi.org/10.1088/1681-7575/ab27e5
  10. The role of the CCQM OAWG in providing SI traceable calibrators for organic chemical measurements vol.24, pp.6, 2013, https://doi.org/10.1007/s00769-019-01407-6
  11. Quantitative analyses of essential fatty acids in cereals and green vegetables by isotope dilution-gas chromatography/mass spectrometry vol.11, pp.1, 2013, https://doi.org/10.1186/s40543-020-00237-3
  12. Purity Assessment of Monosaccharides using Mass Balance Method vol.41, pp.10, 2013, https://doi.org/10.1002/bkcs.12102
  13. Mass Balance Method for Purity Assessment for Pesticide Analytical Standards vol.24, pp.3, 2013, https://doi.org/10.36278/jeaht.24.3.127