참고문헌
- P. Appell & J. Kampe de Feriet: Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite. Gauthier - Villars, Paris, 1926.
- W.N. Bailey: Product of generalized hypergeometric series. Proc. London Math. Soc. 28 (1928), no. 2, 242-254.
- J. Choi: Notes on formal manipulations of double series. Commun. Korean Math. Soc. 18 (2003), no. 4, 781-789. https://doi.org/10.4134/CKMS.2003.18.4.781
- H. Exton: Hypergeometric functions of three variables. J. Indian Acad. Math. 4 (1982), 113-119.
- Y.S. Kim, M.A. Rakha & A.K. Rathie: Generalization of Kummer's second summation theorem with applications. Comput. Math. Math. Phys. 50 (2010), no. 3, 387-402. https://doi.org/10.1134/S0965542510030024
-
Y.S. Kim, M.A. Rakha & A.K. Rathie: Extensions of certain classical summation theorems for the series
$_2F_1$ and$_3F_2$ with applications in Ramanujan's summations. Inter. J. Math. Math. Sci. Vol. 2010, Article ID 309503, 26 pages; doi:10.1155/2010/309503. -
J.L. Lavoie, F. Grondin & A.K. Rathie: Generalizations of Watson's theorem on the sum of a
$_3F_2$ . Indian J. Math. 34 (1992), 23-32. -
J.L. Lavoie, F. Grondin, A.K. Rathie & K. Arora: Generalizations of Dixon's theorem on the sum of a
$_3F_2$ . Math. Comput. 62 (1994), 267-276. -
J.L. Lavoie, F. Grondin & A.K. Rathie: Generalizations of Whipple's theorem on the sum of a
$_3F_2$ . J. Comput. Appl. Math. 72 (1996), 293-300. https://doi.org/10.1016/0377-0427(95)00279-0 -
S. Lewanowicz: Generalized Watson's summation formula for
$_3F_2(1)$ . J. Comput. Appl. Math. 86 (1997), 375-386. https://doi.org/10.1016/S0377-0427(97)00170-2 -
M. Milgram: On hypergeometric
$_3F_2(1)$ . Arxiv:math.CA/0603096, 2006. - E.D. Rainville: Special Functions. Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
-
M.A. Rakha & A.K. Rathie. Generalizations of classical summation theorems for the series
$_2F_1$ and$_3F_2$ with applications. Integral Transforms Spec. Func. 22 (2011), no. 11, 823-840. https://doi.org/10.1080/10652469.2010.549487 - A.K. Rathie & J. Choi: Another proof of Kummer's second theorem. Commun. Korean Math. Soc. 13 (1998), 933-936.
- H.M. Srivastava & J. Choi: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
- H.M. Srivastava & P.W. Karlsson: Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.