DOI QR코드

DOI QR Code

영상 및 레이저레이더 정보융합을 통한 자율주행자동차의 주행환경인식 및 추적방법

Information Fusion of Cameras and Laser Radars for Perception Systems of Autonomous Vehicles

  • 투고 : 2012.10.09
  • 심사 : 2012.12.27
  • 발행 : 2013.02.25

초록

자동차의 자율주행기능 실현을 위해서는 기존의 지능형자동차 인식시스템 보다 강인하고 우수한 성능의 주행환경 인식시스템이 요구된다. 특히, 카메라와 레이저레이더 센서는 물체의 특징, 거리 등의 정보를 제공하는 대표적인 주행환경인식 센서로, 이를 이용한 단일센서기반 인식시스템 연구가 활발히 이루어지고 있다. 일반적으로 레이저레이더 센서의 거리정보는 도로의 구조, 차량, 보행자 등의 인식을 위하여 많이 사용되며, 카메라의 영상정보는 차선, 횡단보도, 표지판 등의 주행환경 인지에 사용된다. 하지만, 단일센서기반 인식시스템은 센서의 특성 및 주행환경에 의한 오검출 또는 미검출 발생률이 높기 때문에 자율주행기능 구현에 적합하지 않다. 따라서 단일센서기반의 인식시스템의 한계를 극복하기 위하여 카메라, 레이저레이더, GPS 등을 이용한 정보융합 인식시스템 개발이 필수적이다. 이 연구에서는 영상 및 레이저레이더의 정보융합을 통해 강인한 차선인식, 횡단보도 인식 등을 수행하는 자율주행자동차의 주행환경 인식기술을 개발하였다. 이 연구를 통해 개발된 주행환경 인식기술은 자율주행자동차에 적용되어 다양한 주행시험을 통해 신뢰성 및 안정성이 검증되었다.

A autonomous vehicle requires improved and robust perception systems than conventional perception systems of intelligent vehicles. In particular, single sensor based perception systems have been widely studied by using cameras and laser radar sensors which are the most representative sensors for perception by providing object information such as distance information and object features. The distance information of the laser radar sensor is used for road environment perception of road structures, vehicles, and pedestrians. The image information of the camera is used for visual recognition such as lanes, crosswalks, and traffic signs. However, single sensor based perception systems suffer from false positives and true negatives which are caused by sensor limitations and road environments. Accordingly, information fusion systems are essentially required to ensure the robustness and stability of perception systems in harsh environments. This paper describes a perception system for autonomous vehicles, which performs information fusion to recognize road environments. Particularly, vision and laser radar sensors are fused together to detect lanes, crosswalks, and obstacles. The proposed perception system was validated on various roads and environmental conditions with an autonomous vehicle.

키워드

참고문헌

  1. Keonyup Chu, Jaehyun Han, Minchae Lee, Dongchul Kim, Kichun Jo, Dong-eon Oh, Enae Yoon, Myeong-gi Gwak, Kwangjin Han, Donghwi Lee, Byungdo Choe, Yangsoo Kim, Kangyoon Lee, Kunsoo Huh and Myoungho Sunwoo, "Development of an Autonomous Vehicle: A1," Transactions of KSAE, vol. 19, no. 4, pp. 146-154, 2011.
  2. Jungmin Kim, Jungmin Heo, Sungyoung Jung and Sungshin Kim, "Path-planning using Modified Genetic Algorithm and SLAM based on Feature Map for Autonomous Vehicle," Journal of Korean Institute of Intelligent Systems, vol. 19, no3, pp. 381-387, 2009. https://doi.org/10.5391/JKIIS.2009.19.3.381
  3. M. Bertozzi, L. Bombini, A. Broggi, P. Cerri, P. Grisleri, P. Medici, and P. Zani, "GOLD: A framework for developing intelligent-vehicle vision applications," IEEE Intelligent Systems, vol. 23, pp. 69-71, 2008.
  4. A. Broggi, A. Cappalunga, C. Caraffi, S. Cattani, S. Ghidoni, P. Grisleri, P. P. Porta, M. Posterli, and P. Zani, "TerraMax Vision at the Urban Challenge 2007," IEEE Trans. on Intelligent Transportation Systems, vol. 11, pp. 194-205, Mar 2010. https://doi.org/10.1109/TITS.2010.2041231
  5. Je Jin Kim and Young Hoon Joo, "Mobile Object Tracking Algorithm Using Particle Filter," Journal of Korean Institute of Intelligent Systems, vol. 19, no 4, pp. 586-591, 2009. https://doi.org/10.5391/JKIIS.2009.19.4.586
  6. R. Danescu and S. Nedevschi, "Probabilistic lane tracking in difficult road scenarios using stereovision," IEEE Trans. on Intelligent Transportation Systems, vol. 10, pp. 272-282, 2009. https://doi.org/10.1109/TITS.2009.2018328
  7. J. Ruyi, K. Reinhard, V. Tobi, and W. Shigang, "Lane detection and tracking using a new lane model and distance transform," Machine Vision and Applications, vol. 22, pp. 721-737, 2011. https://doi.org/10.1007/s00138-010-0307-7
  8. L. Cremean and R. Murray, "Model-based estimation of off-highway road geometry using single-axis ladar and inertial sensing," in Proc. IEEE Conf. Robot. and Autom., 2006.
  9. G. A. Borges and M. J. Aldon, "Line extraction in 2D range images for mobile robotics," Journal of Intelligent and Robotic Systems, vol. 40, pp. 267-297, 2004. https://doi.org/10.1023/B:JINT.0000038945.55712.65
  10. V. Nguyen, "A comparison of line extraction algorithms using 2D range data for indoor mobile robotics," Autonomous Robots, vol. 23, pp. 97-111, Aug 2007. https://doi.org/10.1007/s10514-007-9034-y
  11. R. Duda and P. Hart, Pattern recognition and scene analysis, Wiley, New York, 1973.
  12. Taejun Park and Tai-Hoon Cho, "A study of crosswalk recognition for autonomous vehicles," Proceedings of KIIS Fall Conference, vol. 20, no 2, pp. 422-424, 2010.

피인용 문헌

  1. MCMC Particle Filter based Multiple Preceeding Vehicle Tracking System for Intelligent Vehicle vol.25, pp.2, 2015, https://doi.org/10.5391/JKIIS.2015.25.2.186