DOI QR코드

DOI QR Code

Effect of Pretreatment on the Dissolution of Aluminum Alloy during Hydration Process

수화과정에서 전처리가 알루미늄 합금의 용출에 미치는 효과

  • Lee, Byoung-Gu (Department of Chemical Engineering, Inha University) ;
  • Lee, Hoyeon (Department of Chemical Engineering, Inha University) ;
  • Tak, Yongsug (Department of Chemical Engineering, Inha University)
  • Received : 2013.10.08
  • Accepted : 2013.10.25
  • Published : 2013.10.31

Abstract

Aluminum alloy(3003) can be dissolved during hydration process with hot tap water. In order to increase the stability of aluminum alloy, it was pretreated with anodization and phosphoric acid before hydration process. The effect of pretreatment on the surface property changes was analyzed with X-ray Photoelectron Spectroscopy (XPS) and Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) and their results supported that the increase of hydroxyl group (-OH) on the surface formed during anodization and phosphorous acid treatment prevented the dissolution of aluminum alloy during hydration process at high temperature.

Keywords

References

  1. J. R. Davis, Corrosion of Aluminum and Aluminum Alloys, 1st ed., ASM international, United States of America (1999).
  2. Y. S. Tak, J. W. Kang and J. S. Choi, J. Korean. Ind. Eng. Chem., 17,335 (2006).
  3. W. C. Mosheir, G. D. Davis and K. Ahera, Corros. Sci., 27, 785 (1987). https://doi.org/10.1016/0010-938X(87)90037-0
  4. M. S. Hunter and P. Fowle, J. Electrochem. Soc., 103, 482 (1956). https://doi.org/10.1149/1.2430389
  5. S. Y. Lee, D. H. Park, J. P. Won, Y. H. Kim, M. H. Lee, K. M. Moon and J. H. Jeong, Corro. Sci. Tech., 11, 280 (2012) https://doi.org/10.14773/cst.2012.11.6.280
  6. K. Shimizu, G. M. Brown, H. Habazaki, K. Kobayashi, P. Skeldon, G. E. Thompson and G. C. Wood, Electrochimica Acta, 44, 2297 (1999). https://doi.org/10.1016/S0013-4686(98)00355-7
  7. J. W. Diggle, T. C. Downie and C. W. Goulding, Chem. Rev., 69, 365 (1969). https://doi.org/10.1021/cr60259a005
  8. R. L. Chiu, P. H. Chang and C. H. Tung, Thin Solid Films, 260, 47 (1995). https://doi.org/10.1016/0040-6090(94)06491-1
  9. N. F. Jackson and D. S. Campbell, Thin Solid Films, 36, 331 (1976). https://doi.org/10.1016/0040-6090(76)90027-4
  10. R. L. Chiu and P. H. Chang, J. Electrochem. Soc., 142, 525 (1995). https://doi.org/10.1149/1.2044093
  11. L. Bazzi. R. Salghi, Z. Ei Alami, E. Ait Addi, S. EI Issami, S. Kertit and B. Hammouti, Prog. Org. Coat., 51, 113 (2004). https://doi.org/10.1016/j.porgcoat.2004.06.004
  12. W. T. Tsai, Y. H. Hon and J. T. Lee, Surf. Coat. Technol., 31, 365 (1987). https://doi.org/10.1016/0257-8972(87)90163-0
  13. K. Wefers and C. Misra, Proceedings of the 1st Oxides and Hydroxides of Aluminum, Alcoa Laboratories (1987).
  14. P. R. Underhill and A. N. Rider, Surf. Coatings Tech., 192, 199 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.011
  15. R. S. Alwitt, J. Electrochem. Soc., 121, 1322 (1974). https://doi.org/10.1149/1.2401679
  16. Izaya Nagata, Aluminum Electrolytic Capacitor, Japan Capacitor Company, p.278, Japan (1983).
  17. B. Cheng, S. Ramamurthy and N. S. Mclntyre, J. Mater. Eng. Perform., 6, 405 (1997). https://doi.org/10.1007/s11665-997-0108-y
  18. J. K. Chang, C. M. Liao, C. H. Chen and W. T. Tsai, J. Power Sources, 138, 301 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.021
  19. Japanese Society of Light Metal, Texture and Properties of Aluminum, p.137, Japan (1991).
  20. H. Konno, S. Kobayashi, H. Takahashi and M. Nagayama, Corros. Sci., 22, 913 (1982). https://doi.org/10.1016/0010-938X(82)90061-0
  21. J. Zahr, S. Oswald, M. Turpe, H. J. Ullrich and U. Fussel, Vacuum, 86, 1216 (2012). https://doi.org/10.1016/j.vacuum.2011.04.004
  22. Y. I. Seo, Y. J. Lee, D. G. Kim, K. H. Lee and Y. D. Kim, Appl. Surf. Sci., 256, 4434 (2010). https://doi.org/10.1016/j.apsusc.2010.01.011
  23. S. Geng, S. Zhang and H. Onishi, Mater. Tech. (2002).
  24. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 1st ed., Physical Electronics, USA (1995).
  25. S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara, M. Salmeron and A. Nilsson, J. Phys.: Condens. Matter, 20, 184025 (2008). https://doi.org/10.1088/0953-8984/20/18/184025
  26. B. C. Bunker, G. C. Nelson, K. R. Zavadil, J. C. Barbour, F. D. Wall and J. P. Sullivan, J. Phys. Chem. B, 106, 4705 (2002). https://doi.org/10.1021/jp013246e
  27. W. J. Bernard and J. J. Randall Jr., J. Electrochem. Soc., 108, 822 (1961). https://doi.org/10.1149/1.2428230
  28. X. Yang, Z. Sun, D. Wang and W. Forsling, J. Colloid Interface Sci., 308, 395 (2007). https://doi.org/10.1016/j.jcis.2006.12.023