DOI QR코드

DOI QR Code

Inhibitory Effects of Epigallocatechin-3-Gallate on Microsomal Cyclooxygenase-1 Activity in Platelets

  • Lee, Dong-Ha (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University) ;
  • Kim, Yun-Jung (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University) ;
  • Kim, Hyun-Hong (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University) ;
  • Cho, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University) ;
  • Ryu, Jin-Hyeob (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University) ;
  • Rhee, Man Hee (Laboratory of Veterinary Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Hwa-Jin (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University)
  • Received : 2012.09.21
  • Accepted : 2013.01.09
  • Published : 2013.01.31

Abstract

In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins from green tea leaves, on activities of cyclooxygenase (COX)-1 and thromboxane synthase (TXAS), thromboxane $A_2$ ($TXA_2$) production associated microsomal enzymes. EGCG inhibited COX-1 activity to 96.9%, and TXAS activity to 20% in platelet microsomal fraction having cytochrome c reductase (an endoplasmic reticulum marker enzyme) activity and expressing COX-1 (70 kDa) and TXAS (58 kDa) proteins. The inhibitory ratio of COX-1 to TXAS by EGCG was 4.8. These results mean that EGCG has a stronger selectivity in COX-1 inhibition than TXAS inhibition. In special, a nonsteroid anti-inflammatory drug aspirin, a COX-1 inhibitor, inhibited COX-1 activity by 11.3% at the same concentration ($50{\mu}M$) as EGCG that inhibited COX-1 activity to 96.9% as compared with that of control. This suggests that EGCG has a stronger effect than that of aspirin on inhibition of COX-1 activity. Accordingly, we demonstrate that EGCG might be used as a crucial tool for a strong negative regulator of COX-1/$TXA_2$ signaling pathway to inhibit thrombotic disease-associated platelet aggregation.

Keywords

References

  1. Armstrong, R. A. (1996) Platelet prostanoid receptors. Pharmacol. Ther. 72, 171-191. https://doi.org/10.1016/S0163-7258(96)00103-9
  2. Berenbaum, M. C. (1989) What is synergy? Pharmacol. Rev. 41, 93-141.
  3. Carey, F., Menashi, S. and Crawford, N. (1982) Localization of cyclo-oxygenase and thromboxane synthase in human platelet intracellular membranes. Biochem. J. 204, 847-851. https://doi.org/10.1042/bj2040847
  4. Cho, H. J., Kang, H. J., Kim, Y. J., Lee, D. H., Kwon, H. W., Kim, Y. Y. and Park, H. J. (2012) Inhibition of platelet aggregation by chlorogenic acid via cAMP and cGMP-dependent manner. Blood Coagul. Fibrinolysis 23, 629-635. https://doi.org/10.1097/MBC.0b013e3283570846
  5. Clutton, P, Folts, J. D. and Freedman, J. E. (2001) Pharmacological control of platelet function. Pharmacol. Res. 44, 255-264 . https://doi.org/10.1006/phrs.2001.0861
  6. Deana, R., Turetta, L., Donella-Deana, A., Dona, M., Brunati, A. M., Demichiel, L. and Garbisa, S. (2003) Green tea epigallocatechin-3-gallate inhibits platelet signaling pathways triggered by both proteolytic and non-proteolytic agonists. Thromb. Haemost. 89, 866-874.
  7. DeWitt, D. L., el-Harith, E. A., Kraemer, S. A., Andrews, M. J., Yao, E. F., Amstrong, R. L. and Smith, W. L. (1990) The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J. Biol. Chem. 265, 5192-5198.
  8. FitzGerald, G. A. (1991) Mechanisms of platelet activation: thromboxane $A_{2}$ as an amplifying signal for other agonists. Am. J. Cardiol. 68, 11B-15B. https://doi.org/10.1016/0002-9149(91)90379-Y
  9. Gaddum, J. H. (1940) Pharmacology, Oxford University Press, London, 378-383.
  10. Gresele, P., Deckymyn, H., Nenci, G. G. and Vermylen, J. (1991) Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends Pharmacol. Sci. 12, 158-163. https://doi.org/10.1016/0165-6147(91)90533-X
  11. Hamberg, M., Svensson, J. and Samuelsson, B. (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 72, 2994-2998. https://doi.org/10.1073/pnas.72.8.2994
  12. Hussain, T., Gupta, S., Adhami, V. M. and Mukhtar, H. (2005) Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinnoma cells. Int. J. Cancer 113, 660-669. https://doi.org/10.1002/ijc.20629
  13. Jang, E. K., Azzam, J. E., Dickinson, N. T., Davidson, M. M. and Haslam, R. J. (2002) Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside. Br. J. Haematol. 117, 664-675. https://doi.org/10.1046/j.1365-2141.2002.03479.x
  14. Jeng, J. H., Wu, H. L., Lin, B. R., Lan, W. H., Chang, H. H., Ho, Y. S., Lee, P. H., Wang, Y. J., Wang, J. S., Chen, Y. J. and Chang, M. C. (2007) Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis 191, 250-258. https://doi.org/10.1016/j.atherosclerosis.2006.05.023
  15. Jennings, L. K. (2009) Role of platelets in atherothrombosis. Am. J. Cardiol. 103, 4A-10A. https://doi.org/10.1016/S0002-9149(08)02058-4
  16. Jin, Y. R., Im, J. H., Park, E. S., Cho, M. R., Han, X. H., Lee, J. J., Lim, Y., Kim, T. J. and Yun, Y. P. (2008) Anti-platelet activity of epigallocatechin gallate is mediated by the inhibition of PLCr2 phosphorylation, elevation of $PGD_{2}$ production, and maintaining calcium-ATPase activity. J. Cardiovasc. Pharmacol. 51, 45-54. https://doi.org/10.1097/FJC.0b013e31815ab4b6
  17. Lagarde, M., Menashi, S. and Crawford, N. (1981) Localisation of phospholipase $A_{2}$ and diglyceride lipase activities in human platelet intracellular membranes. FEBS. Lett. 124, 23-26. https://doi.org/10.1016/0014-5793(81)80045-2
  18. Lee, D. H., Cho, H. J., Kang, H. Y., Rhee, M. H. and Park, H. J. (2012) Total saponin from Korean red ginseng inhibits thromboxane $A_{2}$ production associated microsomal enzyme activity in platelets. J. Ginseng. Res. 36, 40-46. https://doi.org/10.5142/jgr.2012.36.1.40
  19. Lewis, G. P. and Watts, I. S. (1982) Prostaglandin endoperoxides, thromboxane $A_{2}$ and adenosine diphosphate in collagen-induced aggregation of rabbit platelets. Br. J. Pharmacol. 75, 623-631. https://doi.org/10.1111/j.1476-5381.1982.tb09183.x
  20. Li, Z., Delaney, M. K., O'Brien, K. A. and Du, X. (2010) Signaling during platelet adhesion and activation. Arteroscler. Thromb. Vasc. Biol. 30, 2341-2349. https://doi.org/10.1161/ATVBAHA.110.207522
  21. Lill, G., Voit, S., Schor, K. and Weber, A. A. (2003) Complex effects of different green tea catechins on human platelets. FEBS. Lett. 546, 265-270. https://doi.org/10.1016/S0014-5793(03)00599-4
  22. Malmsten, C., Hamberg, M., Svensson, J. and Samuelsson, B. (1975) Physiological role of an endoperoxide in human platelets: hemostatic defect due to platelet cyclooxygenase deficiency. Proc. Natl. Acad. Sci. USA 72, 1446-1450. https://doi.org/10.1073/pnas.72.4.1446
  23. Mancuso, M., Filosto, M., Bosetti, F., Ceravolo R., Rocchi, A., Tognoni, G, Manca, M. L., Solaini, G., Siciliano, G. and Murri, L. (2003) Decreased platelet cytochrome c oxidase activity is accompanied by increased blood lactate concentration during exercise in patients with Alzheimer disease. Exp. Neurol. 182, 421-426. https://doi.org/10.1016/S0014-4886(03)00092-X
  24. Ok, W. J., Cho, H. J., Kim, H. H., Lee, D. H., Kang, H. Y., Kwon, H. W., Rhee, M. H., Kim, M. and Park H. J. (2012) Epigallocatechin-3-gallate has an anti-platelet effect in a cyclic AMP-dependent manner. J. Atheroscler. Thromb. 19, 337-348. https://doi.org/10.5551/jat.10363
  25. Park, J. B. (2007) Caffedymine from cocoa has COX inhibitory activity suppressing the expression of a platelet activation marker, p-selectin. J. Agric. Food Chem. 55, 2171-2175. https://doi.org/10.1021/jf0628835
  26. Patrono, C. (2001) Aspirin: New cardiovascular uses for an old drug. Am. J. Med. 110, 62S-65S . https://doi.org/10.1016/S0002-9343(00)00645-8
  27. Peng, G., Dixon, D. A., Muga, S. J., Smith, T. J. and Wargovich, M. J. (2006) Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol. Carcinog. 45, 309-319. https://doi.org/10.1002/mc.20166
  28. Pignone, M. and Williams, C. D. (2010) Aspirin for primary prevention of cardiovascular disease in diabetes mellitus. Nat. Rev. Endocrinol. 6, 619-628. https://doi.org/10.1038/nrendo.2010.169
  29. Roth, G. J., Stanford, N. and Majerus, P. W. (1975) Acetylation of prostaglandin synthase by aspirin. Proc. Nat. Acad. Sci. USA 72, 3073-3076. https://doi.org/10.1073/pnas.72.8.3073
  30. Ruggeri, Z. M. (2002) Platelets in atherothrombosis. Nat. Med. 8, 1227-1234. https://doi.org/10.1038/nm1102-1227
  31. Samokovlisky, A., Rimon, G. and Danon, A. (1999) Differential regulation of cyclooxygenase isoenzymes by cAMP-elevating agents. Eur. J. Pharmacol. 378, 203-211. https://doi.org/10.1016/S0014-2999(99)00461-6
  32. Samuelsson, B., Goldyne, M., Granstrom, E., Mamberg, M., Hammarstrom, S. and Malmsten, C. (1978) Prostaglandin and thromboxanes. Annu. Rev. Biochem. 47, 997-1029. https://doi.org/10.1146/annurev.bi.47.070178.005025
  33. Sanmuganathan, P. S., Ghahramani, P., Jackson, P. R., Wallis, E. J. and Ramsay, L. E. (2001) Aspirin for primary prevention of coronary heart disease: safety and absolute benefit related to coronary risk derived from meta-analysis of randomized trials. Heart 85, 265-271. https://doi.org/10.1136/heart.85.3.265
  34. Schafer, A. I., Levine, S. and Handin, R. I. (1980) Regulation of platelet arachidonic acid oxygenation by cyclic AMP. Blood 56, 853-858.
  35. Schwartz, S. M., Heinmark, R. L. and Majesky, M. W. (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70, 1177-1209. https://doi.org/10.1152/physrev.1990.70.4.1177
  36. Trebino, C. E., Stock, J. L., Gibbons, C. P., Naiman, B. M., Wachtmann, T. S., Umland, J. P., Pandher, K., Lapointe, J. M., Saha, S., Roach, M. L., Carter, D., Thomas, N. A., Durtschi, B. A., McNeish, J. D., Hambor, J. E., Jakobsson, P. J., Carty, T. J., Perez, J. R. and Audoly, L. P. (2003) Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc. Nat. Acad. Sci. USA 100, 9044-9049. https://doi.org/10.1073/pnas.1332766100

Cited by

  1. An Update on the Health Benefits of Green Tea vol.3, pp.1, 2017, https://doi.org/10.3390/beverages3010006
  2. Acetic acid in aged vinegar affects molecular targets for thrombus disease management vol.6, pp.8, 2015, https://doi.org/10.1039/C5FO00327J
  3. Antiplatelet Effects of Caffeic Acid Due to Ca2+ MobilizationInhibition Via cAMP-Dependent Inositol-1, 4, 5-Trisphosphate Receptor Phosphorylation 2014, https://doi.org/10.5551/jat.18994
  4. Natural Products for Antithrombosis vol.2015, 2015, https://doi.org/10.1155/2015/876426
  5. Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms vol.174, pp.11, 2017, https://doi.org/10.1111/bph.13649
  6. Inhibitory Effect of Allyl Isothiocyanate on Platelet Aggregation vol.62, pp.29, 2014, https://doi.org/10.1021/jf4041518
  7. In vitro inhibition of platelet aggregation by peptides derived from oat (Avena sativa L.), highland barley (Hordeum vulgare Linn. var. nudum Hook. f.), and buckwheat (Fagopyrum esculentum Moench) proteins vol.194, 2016, https://doi.org/10.1016/j.foodchem.2015.08.058
  8. Evaluating ancient Egyptian prescriptions today: Anti-inflammatory activity of Ziziphus spina-christi vol.23, pp.3, 2016, https://doi.org/10.1016/j.phymed.2016.01.004
  9. Alditols and monosaccharides from sorghum vinegar can attenuate platelet aggregation by inhibiting cyclooxygenase-1 and thromboxane-A2 synthase vol.155, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.05.018
  10. Antiplatelet and antithrombotic effects of cordycepin-enriched WIB-801CE from Cordyceps militaris ex vivo, in vivo, and in vitro vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1463-8
  11. The Inhibitory Effects of Cordycepin on Phosphoproteins including PI3K, Akt, and p38 vol.49, pp.2, 2017, https://doi.org/10.15324/kjcls.2017.49.2.99
  12. Anti-platelet effects of epigallocatechin-3-gallate in addition to the concomitant aspirin, clopidogrel or ticagrelor treatment vol.33, pp.3, 2018, https://doi.org/10.3904/kjim.2016.228
  13. Plant-Based Modulators of Endocannabinoid Signaling vol.82, pp.3, 2013, https://doi.org/10.1021/acs.jnatprod.8b00874
  14. Applications of Tea (Camellia sinensis) and its Active Constituents in Cosmetics vol.24, pp.23, 2019, https://doi.org/10.3390/molecules24234277
  15. Anti-platelet Effect of Black Tea Extract via Inhibition of TXA2 in Rat vol.25, pp.4, 2019, https://doi.org/10.15616/bsl.2019.25.4.302
  16. Cudrania Tricuspidata root extract (CTE) has an anti-platelet effect via cGMP-dependent VASP phosphorylation in human platelets vol.20, pp.12, 2019, https://doi.org/10.5762/kais.2019.20.12.298