References
- Armstrong, R. A. (1996) Platelet prostanoid receptors. Pharmacol. Ther. 72, 171-191. https://doi.org/10.1016/S0163-7258(96)00103-9
- Berenbaum, M. C. (1989) What is synergy? Pharmacol. Rev. 41, 93-141.
- Carey, F., Menashi, S. and Crawford, N. (1982) Localization of cyclo-oxygenase and thromboxane synthase in human platelet intracellular membranes. Biochem. J. 204, 847-851. https://doi.org/10.1042/bj2040847
- Cho, H. J., Kang, H. J., Kim, Y. J., Lee, D. H., Kwon, H. W., Kim, Y. Y. and Park, H. J. (2012) Inhibition of platelet aggregation by chlorogenic acid via cAMP and cGMP-dependent manner. Blood Coagul. Fibrinolysis 23, 629-635. https://doi.org/10.1097/MBC.0b013e3283570846
- Clutton, P, Folts, J. D. and Freedman, J. E. (2001) Pharmacological control of platelet function. Pharmacol. Res. 44, 255-264 . https://doi.org/10.1006/phrs.2001.0861
- Deana, R., Turetta, L., Donella-Deana, A., Dona, M., Brunati, A. M., Demichiel, L. and Garbisa, S. (2003) Green tea epigallocatechin-3-gallate inhibits platelet signaling pathways triggered by both proteolytic and non-proteolytic agonists. Thromb. Haemost. 89, 866-874.
- DeWitt, D. L., el-Harith, E. A., Kraemer, S. A., Andrews, M. J., Yao, E. F., Amstrong, R. L. and Smith, W. L. (1990) The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J. Biol. Chem. 265, 5192-5198.
-
FitzGerald, G. A. (1991) Mechanisms of platelet activation: thromboxane
$A_{2}$ as an amplifying signal for other agonists. Am. J. Cardiol. 68, 11B-15B. https://doi.org/10.1016/0002-9149(91)90379-Y - Gaddum, J. H. (1940) Pharmacology, Oxford University Press, London, 378-383.
- Gresele, P., Deckymyn, H., Nenci, G. G. and Vermylen, J. (1991) Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends Pharmacol. Sci. 12, 158-163. https://doi.org/10.1016/0165-6147(91)90533-X
- Hamberg, M., Svensson, J. and Samuelsson, B. (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 72, 2994-2998. https://doi.org/10.1073/pnas.72.8.2994
- Hussain, T., Gupta, S., Adhami, V. M. and Mukhtar, H. (2005) Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinnoma cells. Int. J. Cancer 113, 660-669. https://doi.org/10.1002/ijc.20629
- Jang, E. K., Azzam, J. E., Dickinson, N. T., Davidson, M. M. and Haslam, R. J. (2002) Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside. Br. J. Haematol. 117, 664-675. https://doi.org/10.1046/j.1365-2141.2002.03479.x
- Jeng, J. H., Wu, H. L., Lin, B. R., Lan, W. H., Chang, H. H., Ho, Y. S., Lee, P. H., Wang, Y. J., Wang, J. S., Chen, Y. J. and Chang, M. C. (2007) Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis 191, 250-258. https://doi.org/10.1016/j.atherosclerosis.2006.05.023
- Jennings, L. K. (2009) Role of platelets in atherothrombosis. Am. J. Cardiol. 103, 4A-10A. https://doi.org/10.1016/S0002-9149(08)02058-4
-
Jin, Y. R., Im, J. H., Park, E. S., Cho, M. R., Han, X. H., Lee, J. J., Lim, Y., Kim, T. J. and Yun, Y. P. (2008) Anti-platelet activity of epigallocatechin gallate is mediated by the inhibition of PLCr2 phosphorylation, elevation of
$PGD_{2}$ production, and maintaining calcium-ATPase activity. J. Cardiovasc. Pharmacol. 51, 45-54. https://doi.org/10.1097/FJC.0b013e31815ab4b6 -
Lagarde, M., Menashi, S. and Crawford, N. (1981) Localisation of phospholipase
$A_{2}$ and diglyceride lipase activities in human platelet intracellular membranes. FEBS. Lett. 124, 23-26. https://doi.org/10.1016/0014-5793(81)80045-2 -
Lee, D. H., Cho, H. J., Kang, H. Y., Rhee, M. H. and Park, H. J. (2012) Total saponin from Korean red ginseng inhibits thromboxane
$A_{2}$ production associated microsomal enzyme activity in platelets. J. Ginseng. Res. 36, 40-46. https://doi.org/10.5142/jgr.2012.36.1.40 -
Lewis, G. P. and Watts, I. S. (1982) Prostaglandin endoperoxides, thromboxane
$A_{2}$ and adenosine diphosphate in collagen-induced aggregation of rabbit platelets. Br. J. Pharmacol. 75, 623-631. https://doi.org/10.1111/j.1476-5381.1982.tb09183.x - Li, Z., Delaney, M. K., O'Brien, K. A. and Du, X. (2010) Signaling during platelet adhesion and activation. Arteroscler. Thromb. Vasc. Biol. 30, 2341-2349. https://doi.org/10.1161/ATVBAHA.110.207522
- Lill, G., Voit, S., Schor, K. and Weber, A. A. (2003) Complex effects of different green tea catechins on human platelets. FEBS. Lett. 546, 265-270. https://doi.org/10.1016/S0014-5793(03)00599-4
- Malmsten, C., Hamberg, M., Svensson, J. and Samuelsson, B. (1975) Physiological role of an endoperoxide in human platelets: hemostatic defect due to platelet cyclooxygenase deficiency. Proc. Natl. Acad. Sci. USA 72, 1446-1450. https://doi.org/10.1073/pnas.72.4.1446
- Mancuso, M., Filosto, M., Bosetti, F., Ceravolo R., Rocchi, A., Tognoni, G, Manca, M. L., Solaini, G., Siciliano, G. and Murri, L. (2003) Decreased platelet cytochrome c oxidase activity is accompanied by increased blood lactate concentration during exercise in patients with Alzheimer disease. Exp. Neurol. 182, 421-426. https://doi.org/10.1016/S0014-4886(03)00092-X
- Ok, W. J., Cho, H. J., Kim, H. H., Lee, D. H., Kang, H. Y., Kwon, H. W., Rhee, M. H., Kim, M. and Park H. J. (2012) Epigallocatechin-3-gallate has an anti-platelet effect in a cyclic AMP-dependent manner. J. Atheroscler. Thromb. 19, 337-348. https://doi.org/10.5551/jat.10363
- Park, J. B. (2007) Caffedymine from cocoa has COX inhibitory activity suppressing the expression of a platelet activation marker, p-selectin. J. Agric. Food Chem. 55, 2171-2175. https://doi.org/10.1021/jf0628835
- Patrono, C. (2001) Aspirin: New cardiovascular uses for an old drug. Am. J. Med. 110, 62S-65S . https://doi.org/10.1016/S0002-9343(00)00645-8
- Peng, G., Dixon, D. A., Muga, S. J., Smith, T. J. and Wargovich, M. J. (2006) Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol. Carcinog. 45, 309-319. https://doi.org/10.1002/mc.20166
- Pignone, M. and Williams, C. D. (2010) Aspirin for primary prevention of cardiovascular disease in diabetes mellitus. Nat. Rev. Endocrinol. 6, 619-628. https://doi.org/10.1038/nrendo.2010.169
- Roth, G. J., Stanford, N. and Majerus, P. W. (1975) Acetylation of prostaglandin synthase by aspirin. Proc. Nat. Acad. Sci. USA 72, 3073-3076. https://doi.org/10.1073/pnas.72.8.3073
- Ruggeri, Z. M. (2002) Platelets in atherothrombosis. Nat. Med. 8, 1227-1234. https://doi.org/10.1038/nm1102-1227
- Samokovlisky, A., Rimon, G. and Danon, A. (1999) Differential regulation of cyclooxygenase isoenzymes by cAMP-elevating agents. Eur. J. Pharmacol. 378, 203-211. https://doi.org/10.1016/S0014-2999(99)00461-6
- Samuelsson, B., Goldyne, M., Granstrom, E., Mamberg, M., Hammarstrom, S. and Malmsten, C. (1978) Prostaglandin and thromboxanes. Annu. Rev. Biochem. 47, 997-1029. https://doi.org/10.1146/annurev.bi.47.070178.005025
- Sanmuganathan, P. S., Ghahramani, P., Jackson, P. R., Wallis, E. J. and Ramsay, L. E. (2001) Aspirin for primary prevention of coronary heart disease: safety and absolute benefit related to coronary risk derived from meta-analysis of randomized trials. Heart 85, 265-271. https://doi.org/10.1136/heart.85.3.265
- Schafer, A. I., Levine, S. and Handin, R. I. (1980) Regulation of platelet arachidonic acid oxygenation by cyclic AMP. Blood 56, 853-858.
- Schwartz, S. M., Heinmark, R. L. and Majesky, M. W. (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70, 1177-1209. https://doi.org/10.1152/physrev.1990.70.4.1177
- Trebino, C. E., Stock, J. L., Gibbons, C. P., Naiman, B. M., Wachtmann, T. S., Umland, J. P., Pandher, K., Lapointe, J. M., Saha, S., Roach, M. L., Carter, D., Thomas, N. A., Durtschi, B. A., McNeish, J. D., Hambor, J. E., Jakobsson, P. J., Carty, T. J., Perez, J. R. and Audoly, L. P. (2003) Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc. Nat. Acad. Sci. USA 100, 9044-9049. https://doi.org/10.1073/pnas.1332766100
Cited by
- An Update on the Health Benefits of Green Tea vol.3, pp.1, 2017, https://doi.org/10.3390/beverages3010006
- Acetic acid in aged vinegar affects molecular targets for thrombus disease management vol.6, pp.8, 2015, https://doi.org/10.1039/C5FO00327J
- Antiplatelet Effects of Caffeic Acid Due to Ca2+ MobilizationInhibition Via cAMP-Dependent Inositol-1, 4, 5-Trisphosphate Receptor Phosphorylation 2014, https://doi.org/10.5551/jat.18994
- Natural Products for Antithrombosis vol.2015, 2015, https://doi.org/10.1155/2015/876426
- Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms vol.174, pp.11, 2017, https://doi.org/10.1111/bph.13649
- Inhibitory Effect of Allyl Isothiocyanate on Platelet Aggregation vol.62, pp.29, 2014, https://doi.org/10.1021/jf4041518
- In vitro inhibition of platelet aggregation by peptides derived from oat (Avena sativa L.), highland barley (Hordeum vulgare Linn. var. nudum Hook. f.), and buckwheat (Fagopyrum esculentum Moench) proteins vol.194, 2016, https://doi.org/10.1016/j.foodchem.2015.08.058
- Evaluating ancient Egyptian prescriptions today: Anti-inflammatory activity of Ziziphus spina-christi vol.23, pp.3, 2016, https://doi.org/10.1016/j.phymed.2016.01.004
- Alditols and monosaccharides from sorghum vinegar can attenuate platelet aggregation by inhibiting cyclooxygenase-1 and thromboxane-A2 synthase vol.155, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.05.018
- Antiplatelet and antithrombotic effects of cordycepin-enriched WIB-801CE from Cordyceps militaris ex vivo, in vivo, and in vitro vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1463-8
- The Inhibitory Effects of Cordycepin on Phosphoproteins including PI3K, Akt, and p38 vol.49, pp.2, 2017, https://doi.org/10.15324/kjcls.2017.49.2.99
- Anti-platelet effects of epigallocatechin-3-gallate in addition to the concomitant aspirin, clopidogrel or ticagrelor treatment vol.33, pp.3, 2018, https://doi.org/10.3904/kjim.2016.228
- Plant-Based Modulators of Endocannabinoid Signaling vol.82, pp.3, 2013, https://doi.org/10.1021/acs.jnatprod.8b00874
- Applications of Tea (Camellia sinensis) and its Active Constituents in Cosmetics vol.24, pp.23, 2019, https://doi.org/10.3390/molecules24234277
- Anti-platelet Effect of Black Tea Extract via Inhibition of TXA2 in Rat vol.25, pp.4, 2019, https://doi.org/10.15616/bsl.2019.25.4.302
- Cudrania Tricuspidata root extract (CTE) has an anti-platelet effect via cGMP-dependent VASP phosphorylation in human platelets vol.20, pp.12, 2019, https://doi.org/10.5762/kais.2019.20.12.298