DOI QR코드

DOI QR Code

Structure and Mechanical Properties of Thermoplastic Composites Using Microcrystalline Cellulose Nanofibers

미세결정 셀룰로스 나노섬유를 이용한 열가소성 복합재료의 구조와 물성

  • Lee, Jin Ah (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology) ;
  • Yoon, Min Ji (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology) ;
  • Kim, Ki-Young (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology) ;
  • Lim, Dae Young (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology)
  • 이진아 (한국생산기술연구원 바이오나노섬유융합연구그룹) ;
  • 윤민지 (한국생산기술연구원 바이오나노섬유융합연구그룹) ;
  • 김기영 (한국생산기술연구원 바이오나노섬유융합연구그룹) ;
  • 임대영 (한국생산기술연구원 바이오나노섬유융합연구그룹)
  • Received : 2013.10.26
  • Accepted : 2013.12.09
  • Published : 2013.12.31

Abstract

In this study, cellulose nanofibers (CNFs), that is, nanosized cellulose fibers, are manufactured from micro-crystalline cellulose (MCC) by using a high-pressure homogenizer. The CNFs are used as reinforcing materials for thermoplastic composites. Polyamide (PA6) and polylactic acid (PLA) fibers are employed as the matrix in the thermoplastic composites. With an increase in the operation pass number and pressure of the homogenizer, the specific surface area (SSA) of the CNFs increases and the crystalline index (CI) decreases. After 30 passes of MCC through the homogenizer, the SSA increases from $257.2m^2/g$ to $787.1m^2/g$, and the CI decreases from 0.78 to 0.70. The tensile strength of the CNF/PA6 composite is higher than that of the CNF/PLA composite. On the other hand, the modulus of the CNF/PLA composite is higher than that of the CNF/PA6 composite. As the CNF content in the composite increases, the total thickness of composite decreases but the tensile strength increases. The CNF/PA6 (3:7) composite has the maximum tensile strength (21.5 MPa) among the samples considered in this study.

Keywords

References

  1. K. Oksman, M. Skrifvars, and J. F. Selin, "Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites", Compo Sci Technol, 2003, 63, 1317-1324. https://doi.org/10.1016/S0266-3538(03)00103-9
  2. A. K. Bledzki and J. Gassan, "Composites Reinforced with Cellulose Based Fibres", Prog Polym Sci, 1999, 24, 221-274. https://doi.org/10.1016/S0079-6700(98)00018-5
  3. S. Shibata, Y. Cao, and I. Fukumoto, "Light Weight Laminate Composites Made from Kenaf and Polypropylene Fibres", Polym Testing, 2006, 25, 142-148. https://doi.org/10.1016/j.polymertesting.2005.11.007
  4. G. Siqueira, J. Bras, and A. Dufresne, "Cellulosic Bio-nanocomposites: A Review of Preparation Properties and Application", Polymer, 2010, 2, 728-765. https://doi.org/10.3390/polym2040728
  5. T. Zimmermann, E. Pohler, and T. Geiger, "Cellulose Fibrils for Polymer Reinforcement", Adv Eng Mater, 2004, 6, 754-761. https://doi.org/10.1002/adem.200400097
  6. T. Nishino, I. Matsuda, and K. Hirao, "All-Cellulose Composite", Macromolecules, 2004, 37, 7683-7687. https://doi.org/10.1021/ma049300h
  7. W. Gindl and J. Keckes, "All-Cellulose Nanocomposite", Polymer, 2005, 46, 10221-10225. https://doi.org/10.1016/j.polymer.2005.08.040
  8. A. P. Mathew, K. Oksman, and M. Sain, "Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystlline Cellulose (MCC)", J Appl Polym Sci, 2005, 97, 2014-2025. https://doi.org/10.1002/app.21779
  9. S. K. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, "Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance", Biotechnol Biofuels, 2013, 3, 1-10.
  10. T. Zimmermann, N. Bordeanu, and E. Strub, "Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential", Carbohydr Polym, 2010, 79, 1086-1093. https://doi.org/10.1016/j.carbpol.2009.10.045
  11. M. Paakko, M. Ankerfors, H. Kosonen, A. Nykanen, S. Ahola, M. Osterberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala, and T. Lindstrm, "Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels", Biomacromolecules, 2007, 8, 1934-1941. https://doi.org/10.1021/bm061215p
  12. D. M. Panaitescu, P. V. Notingher, M. Ghiurea, F. Ciuprina, H. Paven, M. Iorga, and D. Florea, "Properties of Composite Materials from Polyethylene and Cellulose Microfibrils", J Optoelect Advan Mater, 2007, 9, 2524-2528.
  13. Q. Wu, M. Henriksson, X. Liu, and L. A. Berglund, "A High Strength Nanocomposite Based on Microcrystalline Cellulose and Polyurethane", Biomacromolecules, 2007, 8, 3687-3692. https://doi.org/10.1021/bm701061t
  14. S. Iwamoto, A. N. Nakakaito, H. Yano, and M. Nogi, "Optically Transparent Composites Reinforced with Plant Fiber-Based Nanofibers", Appl Phys A, 2005, 81, 1109-1112. https://doi.org/10.1007/s00339-005-3316-z
  15. A. N. Nakagaito and H. Yano, "Novel High-Strength Biocomposites Based on Microfibrillated Cellulose Having Nano-Order-Unit Web-Like Network Structure", Appl Phys A, 2005, 80, 155-159. https://doi.org/10.1007/s00339-003-2225-2
  16. S. E. Gradwell, S. Renneckar, A. R. Esker, T. Heinze, P. Gatenholm, C. V. Garcia, and W. Glasser, "Surface Modification of Cellulose Fibers: Towards Wood Composites by Biomimetics", Compt Rend Soc Bio, 2004, 327, 945-953. https://doi.org/10.1016/j.crvi.2004.07.015
  17. http://www.emaxtech.co.kr/sub/catalog.php?CatNo=12
  18. J. Floury, A. Desrumaux, and J. Lardieres, "Effect of High-Pressure Homogenization on Droplet Size Distributions and Rheological Properties of Model Oil-in-Water Emulsions", Inno Food Sci Emerging Technol, 2000, 1, 127-134. https://doi.org/10.1016/S1466-8564(00)00012-6
  19. M. Ksibi, S. Rossignol, J. M. Tatibouet, and C. Trapalis, "Synthesis and Solid Charaterization of Nitrogen and Sulfur-Doped $TiO_2$ Photocatalysts Active under Near Visible Light", Mat Lett, 2008, 62, 4204-4206. https://doi.org/10.1016/j.matlet.2008.06.026
  20. S. H. Lee, Y. Teramoto, and T. Endo, "Enhancement of Enzymatic Accessibility by Fibrillation of Woody Biomass Using Batch-Type Kneader with Twin-Screw Elements", Bioreso Technol, 2010, 101, 769-774. https://doi.org/10.1016/j.biortech.2009.08.083
  21. C. H. Lee, "Crystallinity of Wood Cellulose Fibers Studies by X-ray Methods", Forest Prod J, 1961, 11, 108-112.