Browse > Article
http://dx.doi.org/10.12772/TSE.2013.50.386

Structure and Mechanical Properties of Thermoplastic Composites Using Microcrystalline Cellulose Nanofibers  

Lee, Jin Ah (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology)
Yoon, Min Ji (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology)
Kim, Ki-Young (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology)
Lim, Dae Young (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology)
Publication Information
Textile Science and Engineering / v.50, no.6, 2013 , pp. 386-392 More about this Journal
Abstract
In this study, cellulose nanofibers (CNFs), that is, nanosized cellulose fibers, are manufactured from micro-crystalline cellulose (MCC) by using a high-pressure homogenizer. The CNFs are used as reinforcing materials for thermoplastic composites. Polyamide (PA6) and polylactic acid (PLA) fibers are employed as the matrix in the thermoplastic composites. With an increase in the operation pass number and pressure of the homogenizer, the specific surface area (SSA) of the CNFs increases and the crystalline index (CI) decreases. After 30 passes of MCC through the homogenizer, the SSA increases from $257.2m^2/g$ to $787.1m^2/g$, and the CI decreases from 0.78 to 0.70. The tensile strength of the CNF/PA6 composite is higher than that of the CNF/PLA composite. On the other hand, the modulus of the CNF/PLA composite is higher than that of the CNF/PA6 composite. As the CNF content in the composite increases, the total thickness of composite decreases but the tensile strength increases. The CNF/PA6 (3:7) composite has the maximum tensile strength (21.5 MPa) among the samples considered in this study.
Keywords
microcrystalline cellulose; cellulose nanofiber; specific surface area; crystalline index; high pressure homogenizer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Oksman, M. Skrifvars, and J. F. Selin, "Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites", Compo Sci Technol, 2003, 63, 1317-1324.   DOI   ScienceOn
2 A. K. Bledzki and J. Gassan, "Composites Reinforced with Cellulose Based Fibres", Prog Polym Sci, 1999, 24, 221-274.   DOI   ScienceOn
3 S. Shibata, Y. Cao, and I. Fukumoto, "Light Weight Laminate Composites Made from Kenaf and Polypropylene Fibres", Polym Testing, 2006, 25, 142-148.   DOI   ScienceOn
4 G. Siqueira, J. Bras, and A. Dufresne, "Cellulosic Bio-nanocomposites: A Review of Preparation Properties and Application", Polymer, 2010, 2, 728-765.   DOI
5 T. Zimmermann, E. Pohler, and T. Geiger, "Cellulose Fibrils for Polymer Reinforcement", Adv Eng Mater, 2004, 6, 754-761.   DOI   ScienceOn
6 T. Nishino, I. Matsuda, and K. Hirao, "All-Cellulose Composite", Macromolecules, 2004, 37, 7683-7687.   DOI   ScienceOn
7 W. Gindl and J. Keckes, "All-Cellulose Nanocomposite", Polymer, 2005, 46, 10221-10225.   DOI   ScienceOn
8 A. P. Mathew, K. Oksman, and M. Sain, "Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystlline Cellulose (MCC)", J Appl Polym Sci, 2005, 97, 2014-2025.   DOI   ScienceOn
9 S. K. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, "Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance", Biotechnol Biofuels, 2013, 3, 1-10.
10 T. Zimmermann, N. Bordeanu, and E. Strub, "Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential", Carbohydr Polym, 2010, 79, 1086-1093.   DOI   ScienceOn
11 M. Paakko, M. Ankerfors, H. Kosonen, A. Nykanen, S. Ahola, M. Osterberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala, and T. Lindstrm, "Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels", Biomacromolecules, 2007, 8, 1934-1941.   DOI   ScienceOn
12 D. M. Panaitescu, P. V. Notingher, M. Ghiurea, F. Ciuprina, H. Paven, M. Iorga, and D. Florea, "Properties of Composite Materials from Polyethylene and Cellulose Microfibrils", J Optoelect Advan Mater, 2007, 9, 2524-2528.
13 Q. Wu, M. Henriksson, X. Liu, and L. A. Berglund, "A High Strength Nanocomposite Based on Microcrystalline Cellulose and Polyurethane", Biomacromolecules, 2007, 8, 3687-3692.   DOI   ScienceOn
14 S. Iwamoto, A. N. Nakakaito, H. Yano, and M. Nogi, "Optically Transparent Composites Reinforced with Plant Fiber-Based Nanofibers", Appl Phys A, 2005, 81, 1109-1112.   DOI
15 A. N. Nakagaito and H. Yano, "Novel High-Strength Biocomposites Based on Microfibrillated Cellulose Having Nano-Order-Unit Web-Like Network Structure", Appl Phys A, 2005, 80, 155-159.   DOI   ScienceOn
16 S. E. Gradwell, S. Renneckar, A. R. Esker, T. Heinze, P. Gatenholm, C. V. Garcia, and W. Glasser, "Surface Modification of Cellulose Fibers: Towards Wood Composites by Biomimetics", Compt Rend Soc Bio, 2004, 327, 945-953.   DOI   ScienceOn
17 S. H. Lee, Y. Teramoto, and T. Endo, "Enhancement of Enzymatic Accessibility by Fibrillation of Woody Biomass Using Batch-Type Kneader with Twin-Screw Elements", Bioreso Technol, 2010, 101, 769-774.   DOI   ScienceOn
18 http://www.emaxtech.co.kr/sub/catalog.php?CatNo=12
19 J. Floury, A. Desrumaux, and J. Lardieres, "Effect of High-Pressure Homogenization on Droplet Size Distributions and Rheological Properties of Model Oil-in-Water Emulsions", Inno Food Sci Emerging Technol, 2000, 1, 127-134.   DOI   ScienceOn
20 M. Ksibi, S. Rossignol, J. M. Tatibouet, and C. Trapalis, "Synthesis and Solid Charaterization of Nitrogen and Sulfur-Doped $TiO_2$ Photocatalysts Active under Near Visible Light", Mat Lett, 2008, 62, 4204-4206.   DOI   ScienceOn
21 C. H. Lee, "Crystallinity of Wood Cellulose Fibers Studies by X-ray Methods", Forest Prod J, 1961, 11, 108-112.