DOI QR코드

DOI QR Code

Alexander Disease

  • Kang, Ji Hae (Department of Pediatrics, College of Medicine, Dongguk University) ;
  • Hong, Seung Jee (Department of Pediatrics, College of Medicine, Dongguk University) ;
  • Kim, Doo-Kwun (Department of Pediatrics, College of Medicine, Dongguk University)
  • Received : 2013.10.15
  • Accepted : 2013.12.10
  • Published : 2013.12.31

Abstract

Alexander disease (ALXD) is a rare demyelinating disease of the white matter of the brain that is caused by a mutation in the glial fibrillary acidic protein (GFAP) gene. The overexpression of GFAP in astrocytes induces a failure in the developmental growth of the myelin sheath. The neurodegenerative destruction of the myelin sheath of the white matter is accompanied by an accumulation of abnormal deposits of Rosenthal fibers in astrocytes, which is the hallmark of ALXD. The disease can be divided into four groups based on the onset age of the patients: neonatal, infantile, juvenile, or adult. Early-onset disease is more severe, progresses rapidly, and results in a shorter life span than late-onset cases. Magnetic resonance imaging and genetic tests are mostly used for diagnostic purposes. Pathological tests of brain tissue for Rosenthal fibers are definitive diagnostic methods. Therapeutic strategies are being investigated. Ceftriaxone, which is an enhancer of glial glutamate transporter (GLT-1) expression, is currently in clinical trials for the treatment of patients with ALXD. To date, there are no clinically available treatments. The cause, pathology, pathophysiology, inheritance, clinical features, diagnosis, and treatment of ALXD will be reviewed comprehensively.

Keywords

References

  1. Alexander WS. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 1949;72:373-81. https://doi.org/10.1093/brain/72.3.373
  2. Gorospe JR. Alexander disease. In: Gene Reviews [www.ncbi.nlm.nih.gov/books/NBK1172].
  3. Rosenthal W. Uber eine eigenthumliche, mit syringomyelie complicirte geschwulst des ruckenmarks. Bietr Pathol Anat 1898;23:111-43.
  4. Borrett D, Becker LE. Alexander's disease. A disease of astrocytes. Brain 1985;108:367-85. https://doi.org/10.1093/brain/108.2.367
  5. Russo LS Jr, Aron A, Anderson PJ. Alexander's disease: a report and reappraisal. Neurology 1976;26:607-14. https://doi.org/10.1212/WNL.26.7.607
  6. Isaacs A, Baker M, Wavrant-De Vrièze F, Hutton M. Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17. Genomics 1998;51:152-4. https://doi.org/10.1006/geno.1998.5360
  7. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirtyone years (1969-2000). Neurochem Res 2000;25:1439-51. https://doi.org/10.1023/A:1007677003387
  8. Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrilary acidic protein, are associated with Alexander disease. Nat Genet 2001;27:117-20. https://doi.org/10.1038/83679
  9. Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J, Baumann NA. Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci 1978;35:147-55. https://doi.org/10.1016/0022-510X(78)90107-7
  10. Roessmann U, Velasco ME, Sindely SD, Gambetti P. Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res 1980;200:13-21. https://doi.org/10.1016/0006-8993(80)91090-2
  11. Cullen DK, Simon CM, LaPlaca MC. Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronalastrocytic co-cultures. Brain Res 2007;1158:103-15. https://doi.org/10.1016/j.brainres.2007.04.070
  12. Eng LF, Lee YL, Kwan H, Brenner M, Messing A. Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers. J Neurosci Res 1998;53:353-60. https://doi.org/10.1002/(SICI)1097-4547(19980801)53:3<353::AID-JNR9>3.0.CO;2-9
  13. Head MW, Corbin E, Goldman JE. Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease. Am J Pathol 1993;143:1743-53.
  14. Johnson AB, Brenner M. Alexander's disease: clinical, pathologic, and genetic features. J Child Neurol 2003;18:625-32. https://doi.org/10.1177/08830738030180090901
  15. Li R, Messing A, Goldman JE, Brenner M. GFAP mutations in Alexander disease. Int J Dev Neurosci 2002;20:259-68. https://doi.org/10.1016/S0736-5748(02)00019-9
  16. Nielsen AL, Jørgensen P, Jørgensen AL. Mutations associated with a childhood leukodystrophy, Alexander disease, cause deficiency in dimerization of the cytoskeletal protein GFAP. J Neurogenet 2002; 16:175-9. https://doi.org/10.1080/01677060215305
  17. Hagemann TL, Gaeta SA, Smith MA, JohnsonDA, Johnson JA, Messing A. Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hum Mol Genet 2005;14:2443-58. https://doi.org/10.1093/hmg/ddi248
  18. Tang G, Perng MD, Wilk S, Quinlan R, Goldman JE. Oligomers of mutant glial fibrillary acidic protein (GFAP) inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaBcrystallin reverses the inhibition. J Biol Chem 2010;285:10527-37. https://doi.org/10.1074/jbc.M109.067975
  19. Chen YS, Lim SC, Chen MH, Quinlan RA, PerngMD. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res 2011;317:2252-66 https://doi.org/10.1016/j.yexcr.2011.06.017
  20. Hagemann TL, Connor JX, Messing A. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci 2006;26: 11162-73. https://doi.org/10.1523/JNEUROSCI.3260-06.2006
  21. Tian R, Wu X, Hagemann TL, Sosunov AA, Messing A, McKhann GM, et al. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J Neuropathol Exp Neurol 2010;69: 335-45. https://doi.org/10.1097/NEN.0b013e3181d3cb52
  22. Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE. Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 2007;10:321-30. https://doi.org/10.1038/nn1854
  23. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 2003;26:523-30. https://doi.org/10.1016/j.tins.2003.08.008
  24. Ransom CB, Ransom BR, Sontheimer H. Activity-dependent extracellular K+ accumulationin rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 2000;522:427-42. https://doi.org/10.1111/j.1469-7793.2000.00427.x
  25. GFAP mutations associated with Alexander disease. Waisman Center, University of Wisconsin-Madison.[www.waisman.wisc.edu/alexander-disease/mutation-table.pdf].
  26. Prust M, Wang J, Morizono H, Messing A, Brenner M, Gordon E, et al. GFAP mutations, age of onset, and clinical subtypes in Alexander disease. Neurology 2011;77:1287-94. https://doi.org/10.1212/WNL.0b013e3182309f72
  27. Rodriguez D, Gauthier F, Bertini E, Bugiani M, Brenner M, N'guyen S, et al. Infantile Alexander disease: spectrum of GFAP mutations and genotypephenotype correlation. Am J Hum Genet 2001;69:1134-40. https://doi.org/10.1086/323799
  28. Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, et al. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol 2005;57:310-26. https://doi.org/10.1002/ana.20406
  29. Yoshida T, Sasaki M, Yoshida M, Namekawa M, Okamoto Y, Tsujino S, et al. Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. J Neurol 2011;258:1998-2008. https://doi.org/10.1007/s00415-011-6056-3
  30. Pareyson D, Fancellu R, Mariotti C, Romano S, Salmaggi A, Carella F, et al. Adult-onset Alexander disease: a series of eleven unrelated cases with review of the literature. Brain 2008;131:2321-31. https://doi.org/10.1093/brain/awn178
  31. Springer S, Erlewein R, Naegele T, Becker I, Auer D, Grodd W, et al. Alexander disease--classification revisited and isolation of a neonatal form. Neuropediatrics 2000;31:86-92. https://doi.org/10.1055/s-2000-7479
  32. Schiffmann R, van der Knaap MS. Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 2009; 72:750-9. https://doi.org/10.1212/01.wnl.0000343049.00540.c8
  33. van der Knaap MS, Naidu S, Breiter SN, Blaser S, Stroink H, Springer S, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol 2001;22:541-52.
  34. van der Knaap MS, Boor I, Estevez R. Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol 2012;11:973-85. https://doi.org/10.1016/S1474-4422(12)70192-8
  35. van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraad F, et al. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 1995; 37:324-34. https://doi.org/10.1002/ana.410370308
  36. Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE. Alexander disease. J Neurosci 2012;32:5017-23. https://doi.org/10.1523/JNEUROSCI.5384-11.2012
  37. Cho W, Brenner M, Peters N, Messing A. Drug screening to identify suppressors of GFAP expression. Hum Mol Genet 2010;19:3169-78. https://doi.org/10.1093/hmg/ddq227
  38. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005;433:73-7. https://doi.org/10.1038/nature03180
  39. Vargas MR, Johnson JA. Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 2010;7:471-81. https://doi.org/10.1016/j.nurt.2010.05.012