Browse > Article
http://dx.doi.org/10.5734/JGM.2013.10.2.88

Alexander Disease  

Kang, Ji Hae (Department of Pediatrics, College of Medicine, Dongguk University)
Hong, Seung Jee (Department of Pediatrics, College of Medicine, Dongguk University)
Kim, Doo-Kwun (Department of Pediatrics, College of Medicine, Dongguk University)
Publication Information
Journal of Genetic Medicine / v.10, no.2, 2013 , pp. 88-93 More about this Journal
Abstract
Alexander disease (ALXD) is a rare demyelinating disease of the white matter of the brain that is caused by a mutation in the glial fibrillary acidic protein (GFAP) gene. The overexpression of GFAP in astrocytes induces a failure in the developmental growth of the myelin sheath. The neurodegenerative destruction of the myelin sheath of the white matter is accompanied by an accumulation of abnormal deposits of Rosenthal fibers in astrocytes, which is the hallmark of ALXD. The disease can be divided into four groups based on the onset age of the patients: neonatal, infantile, juvenile, or adult. Early-onset disease is more severe, progresses rapidly, and results in a shorter life span than late-onset cases. Magnetic resonance imaging and genetic tests are mostly used for diagnostic purposes. Pathological tests of brain tissue for Rosenthal fibers are definitive diagnostic methods. Therapeutic strategies are being investigated. Ceftriaxone, which is an enhancer of glial glutamate transporter (GLT-1) expression, is currently in clinical trials for the treatment of patients with ALXD. To date, there are no clinically available treatments. The cause, pathology, pathophysiology, inheritance, clinical features, diagnosis, and treatment of ALXD will be reviewed comprehensively.
Keywords
Alexander disease; Cause; Pathology; Pathophysiology; Inheritance; Clinical features; Diagnosis; Treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J, Baumann NA. Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci 1978;35:147-55.   DOI   ScienceOn
2 Roessmann U, Velasco ME, Sindely SD, Gambetti P. Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res 1980;200:13-21.   DOI   ScienceOn
3 Cullen DK, Simon CM, LaPlaca MC. Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronalastrocytic co-cultures. Brain Res 2007;1158:103-15.   DOI   ScienceOn
4 Eng LF, Lee YL, Kwan H, Brenner M, Messing A. Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers. J Neurosci Res 1998;53:353-60.   DOI
5 Head MW, Corbin E, Goldman JE. Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease. Am J Pathol 1993;143:1743-53.
6 Johnson AB, Brenner M. Alexander's disease: clinical, pathologic, and genetic features. J Child Neurol 2003;18:625-32.   DOI
7 Li R, Messing A, Goldman JE, Brenner M. GFAP mutations in Alexander disease. Int J Dev Neurosci 2002;20:259-68.   DOI   ScienceOn
8 Nielsen AL, Jørgensen P, Jørgensen AL. Mutations associated with a childhood leukodystrophy, Alexander disease, cause deficiency in dimerization of the cytoskeletal protein GFAP. J Neurogenet 2002; 16:175-9.   DOI
9 Hagemann TL, Gaeta SA, Smith MA, JohnsonDA, Johnson JA, Messing A. Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hum Mol Genet 2005;14:2443-58.   DOI   ScienceOn
10 Rosenthal W. Uber eine eigenthumliche, mit syringomyelie complicirte geschwulst des ruckenmarks. Bietr Pathol Anat 1898;23:111-43.
11 Borrett D, Becker LE. Alexander's disease. A disease of astrocytes. Brain 1985;108:367-85.   DOI   ScienceOn
12 Alexander WS. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 1949;72:373-81.   DOI   ScienceOn
13 Gorospe JR. Alexander disease. In: Gene Reviews [www.ncbi.nlm.nih.gov/books/NBK1172].
14 Russo LS Jr, Aron A, Anderson PJ. Alexander's disease: a report and reappraisal. Neurology 1976;26:607-14.   DOI
15 van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraad F, et al. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 1995; 37:324-34.   DOI   ScienceOn
16 Isaacs A, Baker M, Wavrant-De Vrièze F, Hutton M. Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17. Genomics 1998;51:152-4.   DOI   ScienceOn
17 Springer S, Erlewein R, Naegele T, Becker I, Auer D, Grodd W, et al. Alexander disease--classification revisited and isolation of a neonatal form. Neuropediatrics 2000;31:86-92.   DOI   ScienceOn
18 Schiffmann R, van der Knaap MS. Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 2009; 72:750-9.   DOI   ScienceOn
19 van der Knaap MS, Naidu S, Breiter SN, Blaser S, Stroink H, Springer S, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol 2001;22:541-52.
20 van der Knaap MS, Boor I, Estevez R. Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol 2012;11:973-85.   DOI   ScienceOn
21 Vargas MR, Johnson JA. Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 2010;7:471-81.   DOI   ScienceOn
22 Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE. Alexander disease. J Neurosci 2012;32:5017-23.   DOI
23 Cho W, Brenner M, Peters N, Messing A. Drug screening to identify suppressors of GFAP expression. Hum Mol Genet 2010;19:3169-78.   DOI   ScienceOn
24 Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005;433:73-7.   DOI   ScienceOn
25 Chen YS, Lim SC, Chen MH, Quinlan RA, PerngMD. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res 2011;317:2252-66   DOI   ScienceOn
26 Hagemann TL, Connor JX, Messing A. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci 2006;26: 11162-73.   DOI   ScienceOn
27 Tian R, Wu X, Hagemann TL, Sosunov AA, Messing A, McKhann GM, et al. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J Neuropathol Exp Neurol 2010;69: 335-45.   DOI   ScienceOn
28 GFAP mutations associated with Alexander disease. Waisman Center, University of Wisconsin-Madison.[www.waisman.wisc.edu/alexander-disease/mutation-table.pdf].
29 Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE. Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 2007;10:321-30.   DOI   ScienceOn
30 Ransom CB, Ransom BR, Sontheimer H. Activity-dependent extracellular K+ accumulationin rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 2000;522:427-42.   DOI   ScienceOn
31 Prust M, Wang J, Morizono H, Messing A, Brenner M, Gordon E, et al. GFAP mutations, age of onset, and clinical subtypes in Alexander disease. Neurology 2011;77:1287-94.   DOI   ScienceOn
32 Rodriguez D, Gauthier F, Bertini E, Bugiani M, Brenner M, N'guyen S, et al. Infantile Alexander disease: spectrum of GFAP mutations and genotypephenotype correlation. Am J Hum Genet 2001;69:1134-40.   DOI   ScienceOn
33 Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, et al. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol 2005;57:310-26.   DOI   ScienceOn
34 Yoshida T, Sasaki M, Yoshida M, Namekawa M, Okamoto Y, Tsujino S, et al. Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. J Neurol 2011;258:1998-2008.   DOI   ScienceOn
35 Pareyson D, Fancellu R, Mariotti C, Romano S, Salmaggi A, Carella F, et al. Adult-onset Alexander disease: a series of eleven unrelated cases with review of the literature. Brain 2008;131:2321-31.   DOI   ScienceOn
36 Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirtyone years (1969-2000). Neurochem Res 2000;25:1439-51.   DOI   ScienceOn
37 Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrilary acidic protein, are associated with Alexander disease. Nat Genet 2001;27:117-20.   DOI   ScienceOn
38 Tang G, Perng MD, Wilk S, Quinlan R, Goldman JE. Oligomers of mutant glial fibrillary acidic protein (GFAP) inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaBcrystallin reverses the inhibition. J Biol Chem 2010;285:10527-37.   DOI
39 Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 2003;26:523-30.   DOI   ScienceOn