DOI QR코드

DOI QR Code

Pseudohypoaldosteronism Type 1

  • Cheong, Hae Il (Department of Pediatrics, Seoul National University Children's Hospital, Research Coordination Center for Rare Diseases, Seoul National University Hospital, Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine)
  • Received : 2013.09.17
  • Accepted : 2013.11.11
  • Published : 2013.12.31

Abstract

Pseudohypoaldosteronism (PHA), a rare syndrome of systemic or renal mineralocorticoid resistance, is clinically characterized by hyperkalemia, metabolic acidosis, and elevated plasma aldosterone levels with either renal salt wasting or hypertension. PHA is a heterogeneous disorder both clinically and genetically and can be divided into three subgroups; PHA type 1 (PHA1), type 2 (PHA2) and type 3 (PHA3). PHA1 and PHA2 are genetic disorders, and PHA3 is a secondary disease of transient mineralocorticoid resistance mostly associated with urinary tract infections and obstructive uropathies. PHA1 includes two different forms with different severity of the disease and phenotype: a systemic type of disease with autosomal recessive inheritance (caused by mutations of the amiloride-sensitive epithelial sodium channel, ENaC) and a renal form with autosomal dominant inheritance (caused by mutations of the mineralocorticoid receptor, MR). In the kidneys, the distal nephron takes charge of the fine regulation of water absorption and ion handling under the control of aldosterone. Two major intracellular actors necessary for the action of aldosterone are the MR and the ENaC. Impairment of the intracellular aldosterone signal transduction pathway results in resistance to the action of mineralocorticoids, which leads to PHA. Herein, ion handling the distal nephron and the clinico-genetic findings of PHA are reviewed with special emphasis on PHA type 1.

Keywords

References

  1. Ellison DH, Thomas CP. Chap. 16. Hereditary disorders of collecting duct sodium and potassium transport. In: Mount DB, Pollak MR, editor. Molecular and genetic basis of renal disease. Philadelphia, Saunders Elsevier, 2008:251-68.
  2. Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension 2005;46:1227-35. https://doi.org/10.1161/01.HYP.0000193502.77417.17
  3. Quinn SJ, Williams GH. Regulation of aldosterone secretion. Annu Rev Physiol 1988;50:409-26. https://doi.org/10.1146/annurev.ph.50.030188.002205
  4. Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 2004;84:489-539. https://doi.org/10.1152/physrev.00030.2003
  5. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987;237:268-75. https://doi.org/10.1126/science.3037703
  6. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988; 242:583-5. https://doi.org/10.1126/science.2845584
  7. Quinkler M, Stewart PM. Hypertension and the cortisol-cortisone shuttle. J Clin Endocrinol Metab 2003;88:2384-92. https://doi.org/10.1210/jc.2003-030138
  8. Mick VE, Itani OA, Loftus RW, Husted RF, Schmidt TJ, Thomas CP. The alpha-subunit of the epithelial sodium channel is an aldosteroneinduced transcript in mammalian collecting ducts, and this transcriptional response is mediated via distinct cis-elements in the 5'-flanking region of the gene. Mol Endocrinol 2001;15:575-88.
  9. Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P. Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 2000;62:573-94. https://doi.org/10.1146/annurev.physiol.62.1.573
  10. Garty H, Palmer LG. Epithelial sodium channels: function, structure, and regulation. Physiol Rev 1997;77:359-96. https://doi.org/10.1152/physrev.1997.77.2.359
  11. Wang W. Renal potassium channels: recent developments. Curr Opin Nephrol Hypertens 2004;13:549-55. https://doi.org/10.1097/00041552-200409000-00011
  12. Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 2001;280:F786-93.
  13. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003;285:F998- 1012. https://doi.org/10.1152/ajprenal.00067.2003
  14. Wingo CS, Smolka AJ. Function and structure of H-K-ATPase in the kidney. Am J Physiol 1995;269(1 Pt 2):F1-16. https://doi.org/10.1152/ajpcell.1995.269.6.1-c
  15. Uchida S, Sasaki S. Function of chloride channels in the kidney. Annu Rev Physiol 2005;67:759-78. https://doi.org/10.1146/annurev.physiol.67.032003.153547
  16. Velázquez H, Silva T, Andújar E, Desir GV, Ellison DH, Greger R. The distal convoluted tubule of rabbit kidney does not express a functional sodium channel. Am J Physiol Renal Physiol 2001;280:F530-9. https://doi.org/10.1152/ajprenal.2001.280.3.F530
  17. Hayama A, Rai T, Sasaki S, Uchida S. Molecular mechanisms of Bartter syndrome caused by mutations in the BSND gene. Histochem Cell Biol 2003;119:485-93. https://doi.org/10.1007/s00418-003-0535-2
  18. Shayakul C, Alper SL. Defects in processing and trafficking of the AE1 $CI^{-}/HCO_{3}^{-}$ exchanger associated with inherited distal renal tubular acidosis. Clin Exp Nephrol 2004;8:1-11. https://doi.org/10.1007/s10157-003-0271-x
  19. Wagner CA, Mohebbi N, Capasso G, Geibel JP. The anion exchanger pendrin (SLC26A4) and renal acid-base homeostasis. Cell Physiol Biochem 2011;28:497-504. https://doi.org/10.1159/000335111
  20. Geller DS. Mineralocorticoid resistance. Clin Endocrinol (Oxf) 2005; 62:513-20. https://doi.org/10.1111/j.1365-2265.2005.02229.x
  21. Hanukoglu A. Type I pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J Clin Endocrinol Metab 1991;73:936-44. https://doi.org/10.1210/jcem-73-5-936
  22. Riepe FG. Pseudohypoaldosteronism. Endocr Dev 2013;24:86-95. https://doi.org/10.1159/000342508
  23. Kostakis ID, Cholidou KG, Perrea D. Syndromes of impaired ion handling in the distal nephron: pseudohypoaldosteronism and familial hyperkalemic hypertension. Hormones 2012;11:31-53.
  24. Sartorato P, Lapeyraque AL, Armanini D, Kuhnle U, Khaldi Y, Salomon R, et al. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism. J Clin Endocrinol Metab 2003;88:2508-17. https://doi.org/10.1210/jc.2002-021932
  25. Sartorato P, Cluzeaud F, Fagart J, Viengchareun S, Lombès M, Zennaro MC. New naturally occurring missense mutations of the human mineralocorticoid receptor disclose important residues involved in dynamic interactions with deoxyribonucleic acid, intracellular trafficking, and ligand binding. Mol Endocrinol 2004;18:2151-65. https://doi.org/10.1210/me.2003-0408
  26. Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 1998;19:279-81. https://doi.org/10.1038/966
  27. Geller DS, Zhang J, Zennaro MC, Vallo-Boado A, Rodriguez-Soriano J, Furu L, et al. Autosomal dominant pseudohypoaldosteronism type 1: mechanisms, evidence for neonatal lethality, and phenotypic expression in adults. J Am Soc Nephrol 2006;17:1429-36. https://doi.org/10.1681/ASN.2005111188
  28. Pujo L, Fagart J, Gary F, Papadimitriou DT, Claës A, Jeunemaître X, et al. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Hum Mutat 2007;28:33-40. https://doi.org/10.1002/humu.20371
  29. Riepe FG, Finkeldei J, de Sanctis L, Einaudi S, Testa A, Karges B, et al. Elucidating the underlying molecular pathogenesis of NR3C2 mutants causing autosomal dominant pseudohypoaldosteronism type 1. J Clin Endocrinol Metab 2006;91:4552-61. https://doi.org/10.1210/jc.2006-1161
  30. Lee SE, Jung YH, Han KH, Lee HK, Kang HG, Ha IS, et al. A case of pseudohypoaldosteronism type 1 with a mutation in the mineralocorticoid receptor gene. Korean J Pediatr 2011;54:90-3. https://doi.org/10.3345/kjp.2011.54.2.90
  31. Sartorato P, Khaldi Y, Lapeyraque AL, Armanini D, Kuhnle U, Salomon R, et al. Inactivating mutations of the mineralocorticoid receptor in Type I pseudohypoaldosteronism. Mol Cell Endocrinol 2004;217:119-25. https://doi.org/10.1016/j.mce.2003.10.017
  32. Tajima T, Kitagawa H, Yokoya S, Tachibana K, Adachi M, Nakae J, et al. A novel missense mutation of mineralocorticoid receptor gene in one Japanese family with a renal form of pseudohypoaldosteronism type 1. J Clin Endocrinol Metab 2000;85:4690-4. https://doi.org/10.1210/jcem.85.12.7078
  33. Riepe FG, Krone N, Morlot M, Peter M, Sippell WG, Partsch CJ. Autosomal- dominant Pseudohypoaldosteronism type 1 in a Turkish family is associated with a novel nonsense mutation in the human mineralocorticoid receptor gene. J Clin Endocrinol Metab 2004;89:2150-2. https://doi.org/10.1210/jc.2003-031555
  34. Chang SS, Grunder S, Hanukoglu A, Rösler A, Mathew PM, Hanukoglu I, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 1996;12:248-53. https://doi.org/10.1038/ng0396-248
  35. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splicesite mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 1996;13:248-50. https://doi.org/10.1038/ng0696-248
  36. Oberfield SE, Levine LS, Carey RM, Bejar R, New MI. Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab 1979;48:228-34. https://doi.org/10.1210/jcem-48-2-228
  37. Greenberg D, Abramson O, Phillip M. Fetal pseudohypoaldosteronism: another cause of hydramnios. Acta Paediatr 1995;84:582-4. https://doi.org/10.1111/j.1651-2227.1995.tb13701.x
  38. Narchi H, Santos M, Kulaylat N. Polyhydramnios as a sign of fetal pseudohypoaldosteronism. Int J Gynaecol Obstet 2000;69:53-4. https://doi.org/10.1016/S0020-7292(00)00180-6
  39. Urbatsch A, Paller AS. Pustular miliaria rubra: a specific cutaneous finding of type I pseudohypoaldosteronism. Pediatr Dermatol 2002; 19:317-9. https://doi.org/10.1046/j.1525-1470.2002.00090.x
  40. Martin JM, Calduch L, Monteagudo C, Alonso V, García L, Jorda E. Clinico-pathological analysis of the cutaneous lesions of a patient with type I pseudohypoaldosteronism. J Eur Acad Dermatol Venereol 2005;19:377-9. https://doi.org/10.1111/j.1468-3083.2004.01173.x
  41. Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, et al. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 1999;341:156-62. https://doi.org/10.1056/NEJM199907153410304
  42. Malagon-Rogers M. A patient with pseudohypoaldosteronism type 1 and respiratory distress syndrome. Pediatr Nephrol 1999;13:484-6. https://doi.org/10.1007/s004670050643
  43. Akcay A, Yavuz T, Semiz S, Bundak R, Demirdoven M. Pseudohypoaldosteronism type 1 and respiratory distress syndrome. J Pediatr Endocrinol Metab 2002;15:1557-61.
  44. Rosler A. The natural history of salt-wasting disorders of adrenal and renal origin. J Clin Endocrinol Metab 1984;59:689-700. https://doi.org/10.1210/jcem-59-4-689
  45. Paver WK, Pauline GJ. Hypertension and hyperpotassaemia without renal disease in a young male. Med J Aust 1964;2:305-6.
  46. Gordon RD, Geddes RA, Pawsey CG, O'Halloran MW. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med 1970;19:287-94. https://doi.org/10.1111/imj.1970.19.4.287
  47. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science 2001;293:1107-12. https://doi.org/10.1126/science.1062844
  48. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities. Nature 2012;482:98-102. https://doi.org/10.1038/nature10814
  49. Bülchmann G, Schuster T, Heger A, Kuhnle U, Joppich I, Schmidt H. Transient pseudohypoaldosteronism secondary to posterior urethral valves - a case report and review of the literature. Eur J Pediatr Surg 2001;11:277-9. https://doi.org/10.1055/s-2001-17151
  50. DuBose TD Jr. Molecular and pathophysiologic mechanisms of hyperkalemic metabolic acidosis. Trans Am Clin Climatol Assoc 2000;111:122-33.
  51. Bogdanovic R, Stajic N, Putnik J, Paripovic A. Transient type 1 pseudohypoaldosteronism: report on an eight-patient series and literature review. Pediatr Nephrol 2009;24:2167-75. https://doi.org/10.1007/s00467-009-1285-8