이유자돈에 대한 Lactobacillus plantarum과 Bacillus subtilis 합제 투여에 따른 면역반응과 설사발생에 미치는 효과

Effects of Feeding a Combination of Probiotics Containing Lactobacillus plantarum and Bacillus Subtilis on Immune Response and Diarrhea Incidence in Post-weaning Piglets

  • 박은기 (고신대학교 의과대학) ;
  • 유은아 (보건복지부 통영검역소) ;
  • 차춘남 (경상대학교 공과대학) ;
  • ;
  • 김석 (경상대학교 수의과대학) ;
  • 이후장 (경상대학교 수의과대학)
  • Park, Eun-Kee (Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University) ;
  • Yoo, Eun-Ah (Tongyeong National Quarantine Station, Ministry of Health & Welfare) ;
  • Cha, Chun-Nam (Department of Industrial Systems Engineering and Engineering Research Institute, College of Engineering, Gyeongsang National University) ;
  • Tutkun, Engin (Ankara Occupational Diseases Hospital, Ministry of Health) ;
  • Kim, Suk (Research Institute of Live Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Research Institute of Live Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • 심사 : 2013.10.24
  • 발행 : 2013.12.31

초록

본 연구는 Lactobacillus plantarum (L. plantarum)과 Bacillus subtilis (B. subtilis)의 합제 (LB)를 이유자돈에 경구 투여하여, 면역반응, 설사발생 그리고 분변 중 균수변화 등에 미치는 효과를 평가하기 위해 수행하였다. 28일령의 이유자돈 100두를 대상으로 군 당 20두씩 5개 군 (NC, 항생제와 LB 무투여; PC, 0.03% chlortetracycline 투여; LB 1, LB 0.5 kg/ton feed; LB 2, LB 1.0 kg/ton feed; LB 3, LB 2.0 kg/ton feed)으로 나누어, 4주 동안 LB를 투여하면서, 1주일 간격으로 분변지수를 산출하여 군별로 기록하였으며, 투여 종료 후, 혈액 및 분변을 채취하여, 혈액시료로부터 IgG와 IFN-${\gamma}$를 분석하였고, 분변시료로부터 lactic acid bacteria (LAB)와 Enterobacteriaceae (ENT)의 수를 확인하였다. LB 투약 2주째부터, LB 2와 LB 3의 설사지수는 NC에 비해 통계적으로 유의성 있게 감소하였으며 (P<0.05), IgG와 IFN-${\gamma}$의 농도도 NC에 비해 통계적으로 유의성 있게 증가하였다(P<0.05). 또한, LB 2와 LB 3의 LAB와 ENT 수는 NC과 PC에 비해 통계적으로 유의성 있게 변화하는 결과를 나타내었다(P<0.05). 이상의 결과로부터, LB는 강력한 항생제 대체제로서 자돈 설사예방에 사용될 수 있을 것으로 사료된다.

A study investigated the effects of a mixture of Lactobacillus plantarum (L. plantarum) and Bacillus subtilis (B. subtilis) on diarrhea incidence, immune response, and fecal microflora counts in post-weaning piglets. One hundred 28-day-old piglets were randomly assigned to five treatment groups: negative control (NC), free of antibiotics; positive control (PC), 0.03% chlortetracycline; LB 1, a mixture of L. plantarum and B. subtilis (LB) 0.5 kg/ton feed; LB 2, LB 1.0 kg/ton feed; and LB 3, LB 2.0 kg/ton feed. Diarrhea scores for LB 2 and LB 3 from the 2nd week were significantly reduced compared to NC (P<0.05). In terms of the level of IgG and IFN-${\gamma}$, all treatment groups were significantly higher than NC (P<0.05), and the IgG level of LB 3 was significantly higher than that of PC (P<0.05). Furthermore, fecal lactic acid bacteria (LAB) counts for LB 2 and LB 3 were significantly higher than those of NC and PC (P<0.05). In addition, fecal Enterobacteriaceae (ENT) counts for PC, LB 2 and LB 3 were significantly lower than those of NC (P<0.05). Based on the results from this study, it was concluded that a combination of L. plantarum and B. subtilis strains could be used as potential alternatives to antibiotics to prevent diarrhea incidence in piglets.

키워드

참고문헌

  1. Barton MD. Antibiotic use in animal feed and its impact on human health. Nutr Res Rev 2000; 13: 279-299. https://doi.org/10.1079/095442200108729106
  2. Biagi G, Piva A, Moschini M, Vezzali E, Roth FX. Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. J Anim Sci 2006; 84: 370-378. https://doi.org/10.2527/2006.842370x
  3. Chen YJ, Son KS, Min BJ, Cho JH, Kwon OS, Kim IH. Effects of dietary probiotic on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in growing pigs. Asian-Aust J Anim Sci 2005; 18: 1464-1468. https://doi.org/10.5713/ajas.2005.1464
  4. Chu GM, Lee SJ, Jeong HS, Lee SS. Efficacy of probiotics from anaerobic microflora with prebiotics on growth performance and noxious gas emission in growing pigs. Anim Sci J 2011; 82: 282-290. https://doi.org/10.1111/j.1740-0929.2010.00828.x
  5. Cox E, Cools V, Thoonen H, Hoorens J, Houvenaghel A. Effect of experimentally-induced villus atrophy on adhesion of K88ac-positive Escherichia coli in just-weaned pigs. Vet Microbiol 1988; 17: 159-169. https://doi.org/10.1016/0378-1135(88)90007-7
  6. Desouky SG, Ibrahim SM. Effect of antimicrobial metabolites produced by lactic acid bacteria (Lab) on quality aspects of frozen tilapia (Oreochromis niloticus) fillets. World J Fish Mar Sci 2009; 1: 40-45.
  7. Gaggia F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010; 141: S15-28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031
  8. Hosoi T, Ametani A, Kiuchi K, Kaminogawa S. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can J Microbiol 2000; 46: 892-897. https://doi.org/10.1139/w00-070
  9. Kenny M, Smidt H, Mengheri E, Miller B. Probiotics - do they have a role in the pig industry? Animal 2011; 5: 462-470. https://doi.org/10.1017/S175173111000193X
  10. Kiers JL, Meijer JC, Nout MJR, Rombouts FM, Nabuurs MJA, van der Meulen J. Effect of fermented soya beans on diarrhea and feed efficiency in weaned piglets. J Appl Microbiol 2003; 95: 545-552. https://doi.org/10.1046/j.1365-2672.2003.02011.x
  11. Kim MS, Lim JH, Park BK, Hwang YH, Song IB, Park SC, Yun HI. Effect of surfactin on growth performance of weaning piglets in combination with Bacillus subtilis BC1212. J Vet Clin 2009; 26(2): 117-122.
  12. Kirchgessner M, Roth FX, Eidelsburger U, Gedek B. The nutritive efficiency of Bacillus cereus as a probiotic in the raising of piglets. 1. Effect on the growth parameters and gastrointestinal environment. Arch Tierernahr 1993; 44: 111-121. https://doi.org/10.1080/17450399309386062
  13. Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stantona TB. In-feed antibiotic effects on the swine intestinal microbiome. PNAS 2012; 109: 1691-1696. https://doi.org/10.1073/pnas.1120238109
  14. Maneewan C, Yamauchi K, Thirabunyanon M, Siri S, Mekbungwan A, Thongwittaya N. Development of Bacillus subtilis MP and effective utilization on productivity and microorganisms in feces of suckling piglets. Int J Appl Res Vet Med 2011; 9: 382-387.
  15. National Research Council (NRC). Nutrient Requirements of Swine. 9th ed. Washington, DC: National Academies Press. 1998: 110-123.
  16. Niba AT, Beal JD, Kudi AC, Brooks PH. Bacterial fermentation in the gastrointestinal tract of non-ruminant: influence of fermented feeds and fermentable carbohydrates. Trop Anim Health Prod 2009; 41: 1393-1407. https://doi.org/10.1007/s11250-009-9327-6
  17. O'Hara AM, Shanahan F. Mechanisms of action of probiotics in intestinal diseases. Sci World J 2007; 7: 31-46. https://doi.org/10.1100/tsw.2007.26
  18. Priest FG. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 1977; 41: 711-753.
  19. Reid G, Jass J, Sebulsky MT, Mc Cormick JK. Potential uses of probiotics in clinical practice. Clin Microbiol Rev 2003; 16: 658-672. https://doi.org/10.1128/CMR.16.4.658-672.2003
  20. Ross GR, Gusils C, Oliszewski R, de Holgado SC, Gonzalez SN. Effects of probiotics administration in swine. J Biosci Bioeng 2010; 109: 545-549. https://doi.org/10.1016/j.jbiosc.2009.11.007
  21. Shiomi H, Masuda A, Nishiumi S, Nishida M, Takagawa T, Shiomi Y, Kutsumi H, Blumberg RS, Azuma T, Yoshida M. Gamma interferon produced by antigen-specific CD4+ T cells regulates the mucosal immune responses to Citrobacter rodentium infection. Infect Immun 2010; 78(6): 2653-2666. https://doi.org/10.1128/IAI.01343-09
  22. Simmons C P, Goncalves NS, Ghaem-Maghami M, Bajaj- Elliott M, Clare S, Neves B, Frankel G, Dougan G, Mac- Donald TT. Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL- 12 or IFN-gamma. J Immunol 2002; 168:1804-1812. https://doi.org/10.4049/jimmunol.168.4.1804
  23. Soccol CR, Vandenberghe LPS, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JD, Pandey A, Thomaz-Soccol V. The potential of probiotics: A review. Food Technol Biotechnol 2010; 48: 413-434.
  24. Tambekar DH, Bhutada SA. An evaluation of probiotic potential of Lactobacillus sp. from milk of domestic animals and commercial available probiotic preparations in prevention of enteric bacterial infections. Rec Res Sci Technol 2010; 2: 82-88.
  25. Thu TV, Loh TC, Foo HL, Yaakub H, Bejo MH. Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, feces characteristics, intestinal morphology and diarrhea incidence in postweaning piglets. Trop Anim Health Prod 2011; 43: 69-75. https://doi.org/10.1007/s11250-010-9655-6
  26. Tortuero F, Rioperez J, Fernandez E, Rodriguez ML. Response of piglets to oral administration of lactic acid bacteria. J Food Protect 1995; 58: 1369-1374. https://doi.org/10.4315/0362-028X-58.12.1369
  27. Tropcheva R, Georgieva R, Danova S. Adhesion ability of Lactobacillus plantarum AC131. Biotechnol Biotechnol Equip 2011; 25: 121-124. https://doi.org/10.5504/BBEQ.2011.0123
  28. Tsukahara T, Tsuruta T, Nakanishi N, Hikita C, Mochizuk M, Nakayama K. The preventive effect of Bacillus subtilus strain DB9011 against experimental infection with enterotoxcemic Escherichia coli in weaning piglets. Anim Sci J 2013; 84: 316-321. https://doi.org/10.1111/asj.12003
  29. Wang A, Yu H, Gao X, Li X, Qiao S. Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets. Antonie Van Leeuwenhoek 2009; 96: 89-98. https://doi.org/10.1007/s10482-009-9339-2