DOI QR코드

DOI QR Code

구리 촉매상에서 글리세롤의 산화 카르보닐화 반응에 의한 글리세롤 카보네이트 합성

Glycerol Carbonate Synthesis by Glycerol Oxidative Carbonylation over Copper Catalysts

  • 최재형 (부경대학교 화학공학과) ;
  • 이상득 (한국과학기술연구원 청정에너지연구센터) ;
  • 우희철 (부경대학교 화학공학과)
  • Choi, Jae Hyung (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Sang Deuk (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Woo, Hee Chul (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2013.12.13
  • 심사 : 2013.12.20
  • 발행 : 2013.12.31

초록

본 연구에서는 환경친화적인 측면을 고려하여 제철소 및 석유화학공장에서 많이 발생되는 부생가스인 일산화탄소와 산소를 이용하여 글리세롤로부터 글리세롤 카보네이트를 합성하는 공정에 대하여 연구하였다. 글리세롤의 산화성 카르보닐화 반응활성은 회분식 고압반응기에서 다양한 금속촉매(Cu, Pd, Fe, Sn, Zn, Cr계)에 대한 영향과 산화제, 일산화탄소와 산소의 몰 비율, 촉매량, 용매의 종류, 반응 온도 및 시간, 탈수제 첨가에 대한 반응조건들을 확인하였다. 특히, 염화구리 촉매가 우수한 반응 활성을 나타내었고, 니트로벤젠 용매상에서 글리세롤:일산화탄소:촉매의 몰 비율이 1:3:0.15, 일산화탄소:산소의 몰 비율이 2:1, 전체 반응압력이 30 bar, 반응온도 413 K, 반응시간 4시간 동안 염화구리(I)와 염화구리(II) 촉매에 대한 수율은 각각 최대 44%와 64%를 보였다. 이러한 결과로부터 구리촉매의 산화수에 따라 반응활성이 큰 차이가 보이는 것을 확인하였으며, 산화제로서의 산소의 역할은 글리세롤의 카르보닐화 반응 후 산화반응이 수반되어 부생성물인 물을 생성하는데 중요한 역할을 하고 있는 것을 확인할 수 있었다.

In environmental friendly aspects, the synthesis of glycerol carbonate from glycerol using carbon monoxide and oxygen gases which were produced in petrochemical plants was studied. The oxidative carbonylation of glycerol under batch reaction system was performed on parameter conditions such as effect of various metals (Cu, Pd, Fe, Sn, Zn, Cr), oxidizing agents, mole ratio of carbon monoxide to oxygen, catalyst amount, solvent types, reaction temperature and time and dehydrating agents. In particular copper chloride catalysts showed the excellent activities, and the glycerol carbonate yields over CuCl and $CuCl_2$ catalysts were the maximum of 44% and 64%, respectively at the following reaction conditions: solvent as nitrobenzene, mole ratio of 1:3:0.15 (glycerol:carbon monoxide:catalyst), mole ratio of 2:1 (carbon monoxide:oxygen), the total pressure of 30 bar at 413 K for 4 hr. It was found that reactivity were significantly different depending on the oxidation number of Cu catalysts, and oxygen plays an important role as oxidizing agents in producing H2O during oxidation reaction after carbonylation of glycerol.

키워드

참고문헌

  1. Hong, Y. K., and Hong, W. H., "Biodiesel Production Technology and Its Fuel Properties," Korean Chem. Eng. Res., 45(5), 424-432 (2007).
  2. Park, S., and Rang, M.-J., "Recent Studies on New Value- Added Glycerol Derivatives," J. Korean Ind. Eng. Chem., 20(4), 363-369 (2009).
  3. Ochoa-Gomez, J. R., Gomez-Jimenez-Aberasturi, O., Maestro- Madurga, B., Pesquera -Rodriguez A., Ramirez-Lopez, C., Lorenzo-Ibarreta, L., Torrecilla-Soria, J., and Villaran-Velasco, M. C., "Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate by Transesterification: Catalyst Screening and Reaction Optimization," Appl. Catal. A: Gen., 366, 315-324 (2009). https://doi.org/10.1016/j.apcata.2009.07.020
  4. Kim, S. C., Kim, Y. H., Lee, H., Yoon, D. Y., and Song, B. K., "Lipase-catalyzed Synthesis of Glycerol Carbonate from Renewable Glycerol and Dimethyl Carbonate through Transesterification," J. Mol. Catal. B: Enzym., 49, 75-78 (2007). https://doi.org/10.1016/j.molcatb.2007.08.007
  5. Rokicki, G., Rakoczy, P., Parzuchowski, P., and Sobiecki, M., "Hyperbranched Aliphatic Polyethers Obtained from Environmentally Benign Monomer: Glycerol Carbonate," Green Chem., 7, 529-539 (2005). https://doi.org/10.1039/b501597a
  6. Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., and Concepción, P., "Chemicals from Biomass: Synthesis of Glycerol Carbonate by Transesterification and Carbonylation with Urea with Hydrotalcite Catalysts. The Role of Acid-base Pairs," J. Catal., 269, 140-149 (2010). https://doi.org/10.1016/j.jcat.2009.11.001
  7. Aresta, M., Dibenedetto A., Nocito, F., and Pastore, C., "A Study on the Carboxylation of Glycerol to Glycerol Carbonate with Carbon Dioxide: The Role of the Catalyst, Solvent and Reaction Conditions," J. Mol. Catal. A: Chem., 257, 149-153 (2006). https://doi.org/10.1016/j.molcata.2006.05.021
  8. Teles, J. H., Rieber, N., and Harder, W., "Preparation of Glyceryl Carbonate," U.S. Patent No. 5,359,094 (1994).
  9. Hua, J., Li, J., Gu, Y., Guan, Z., Mo, W., Ni, Y., Li, T., and Li, G., "Oxidative Carbonylation of Glycerol to Glycerol Carbonate Catalyzed by $PdCl_2$(phen)/KI," App. Catal. A: Gen., 386, 188-193 (2010). https://doi.org/10.1016/j.apcata.2010.07.059
  10. Seki, Y., Sasa, T., Takeuchi, H., Uno, M., and Namba, M., "Process for Producing Glycidol," U.S. Patent No. 2011/0015414 A1 (2011)
  11. Choi, J. S., Simanjutaka, F. S. H., Oh, J. Y., Lee, K. I., Lee, S. D., Cheong, M., Kim, H. S., and Lee, H., "Ionicliquid- catalyzed Decarboxylation of Glycerol Carbonate to Glycidol," J. Catal., 297, 248-255 (2013). https://doi.org/10.1016/j.jcat.2012.10.015
  12. Zhang, Y., and Bell, A. T., "The Mechanism of Dimethyl Carbonate Synthesis on Cu-exchanged Zeolite Y," J. Catal., 255, 153-161 (2005).
  13. Park, J. S., Suh, Y. W., Park, T. J., and Suh, D. J., "Synthesis of Dimethyl Carbonate by Oxidative Carbonylation of Methanol over Cu Catalysts," Clean Tech., 14(3), 160-165 (2008).
  14. Nam, J. K., Cho, D. -H., Suh, J. -K., and Kim, S. -B., "Dimethyl Carbonate Sythesis by Methanol Oxidative Carbonylation," Korean Chem. Eng. Res., 49(5), 530-534 (2011). https://doi.org/10.9713/kcer.2011.49.5.530
  15. Libus, W., and Pastewski, R., "Thermodynamic and Structural Features of Chloro-complex Formation of Bivalent Transition Metals in Dimethylsulfoxide," J. Solution Chem., 17, 59-65 (1988). https://doi.org/10.1007/BF00651853
  16. Li, J., and Wang, T., "Chemical Equilibrium of Glycerol Carbonate Synthesis from Glycerol," J. Chem. Thermodynamics, 43, 731-736 (2011). https://doi.org/10.1016/j.jct.2010.12.013

피인용 문헌

  1. Process intensification for tertiary amine catalyzed glycerol carbonate production: translating microwave irradiation to a continuous-flow process vol.5, pp.27, 2015, https://doi.org/10.1039/C5RA02117K