DOI QR코드

DOI QR Code

은 나노 페이스트와 젤 전해질을 이용한 슈퍼캐패시터 제작

Fabrication of Supercapacitors using Silver Nano Paste and Gel Electrolyte

  • 윤성만 (부산대학교 기계공학부) ;
  • 장현정 (한국기계연구원 첨단생산장비연구본부) ;
  • 김대원 (한국기계연구원 첨단생산장비연구본부) ;
  • 장윤석 (한국기계연구원 첨단생산장비연구본부) ;
  • 조정대 (한국기계연구원 첨단생산장비연구본부) ;
  • 고정상 (부산대학교 기계공학부)
  • Yoon, Seong Man (School of Mechanical Engineering, Pusan National University) ;
  • Jang, Hyunjung (Advanced Manufacturing Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Kim, Dae Won (Advanced Manufacturing Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Jang, Yunseok (Advanced Manufacturing Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Jo, Jeongdai (Advanced Manufacturing Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Go, Jeung Sang (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2013.10.18
  • 심사 : 2013.11.18
  • 발행 : 2013.12.31

초록

폴리이미드(polyimide) 필름 위에 은(Ag) 나노 페이스트(paste)가 인쇄된 집전체 및 활성탄소(activated carbon)를 이용하여 제조한 페이스트와 5% potassium polyacrylate (PAAK) 겔(gel) 전해질을 이용하여 슈퍼캐패시터(supercapacitor) 반쪽전지(half cell)를 제작하였다. 집전체 및 전극은 스크린 인쇄를 이용하여 제작하였으며 인쇄된 집전체의 두께는 $7.3{\mu}m$이고 면저항은 $5{\sim}7m{\Omega}/square$이다. 전극 페이스트는 비표면적 $1,968m^2/g$인 활성탄소이고 도전재는 카본 블랙(carbon black)을 사용하였으며 바인더로는 poly (4-vinylphenol)를 7:1:3 비율로 혼합하고 2-(2-buthoxyethoxy) 에틸아세테이트(BCA)를 주 용매로 사용하여 제조하였다. 전기화학적 분석을 위해 순환-전압 전류법(cyclic voltammetry)을 이용하여 전기화학적 특성과 안정도를 평가하였으며 순환-전압전류법 측정을 위한 인가 전압의 범위는 -0.5 V~0.5 V이고 주사속도(scan rate)의 범위는 10~500 mV/s로 하였다. 제작된 슈퍼캐패시터 반쪽전지의 비축전 용량은 주사속도가 10 mV/s, 500 mV/s일 때 각각 44.04 F/g, 8.62 F/g이었다.

The supercapacitors were fabricated using silver (Ag) nano paste and activated carbon paste on the polyimide (PI) film and 5% potassium polyacrylate (PAAK) was used for gel electrolyte. In this paper, the current collector film and the electrode film were fabricated using screen printing. The thickness of printed silver paste was $7.3{\mu}m$ and the sheet resistance has the range of $5-7m{\Omega}/square$. An activated carbon with a surface area of $1,968m^2/g$, an electronic conducting agent (SUPER P, TIMCAL) and poly (4-vinylphenol) were mixed in 2-(2-buthoxyethoxy) ethyl acetate (BCA) with a ratio of 7:1:3 to fabricate the electrode paste. To analyze electrochemical characteristics, cyclic voltammetry was performed to evaluate the stability of the devices under the voltage range of -0.5-0.5 V. The calculated specific capacitances were 44.04 and 8.62 F/g for 10 and 500 mV/s scan rates, respectively.

키워드

참고문헌

  1. Kim, J. H., "Electrochemical Capacitors," J. Korean Electrochem. Soc., 10, 1, 36-42 (2007). https://doi.org/10.5229/JKES.2007.10.1.036
  2. Potet, C., Taberna, P. L., Simon, P., and Flahaut, E., "Influence of Carbon Nanotubes Addition on Carbon-carbon Supercapacitor Performances in Organic Electrolyte," J. Power Sources, 139, 371-378 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.015
  3. Kaempgen, M., Chan, C. K., Ma, J., Cui, Y., and Gruner, G., "Printable thin Film Supercapacitors Using Single-walled Carbon Nanotubes," Nano Lett., 9, 1872-1876 (2009). https://doi.org/10.1021/nl8038579
  4. Pech, D., Bruneta, M., Tabernab, P., Simonb, P., Fabrea, N., Mesnilgrentea, F., Conederaa, V., and Duroua, H. "Elaboration of a Microstructured Inkjet-printed Carbon Electrochemical Capacitor," J. Power Sources, 195, 1266-1269 (2009).
  5. Kim, D. W., Nam, H. S., Kim, J. D., Wu, N., and Ko, J. M., "Supercapacitive Properties of Nanorod $MnO_2$ in Gel-electrolyte Containing Potassium Polyacrylate," Theories Applicat. Chem. Eng., 16, 2 (2010).
  6. http://www.ncbi.nlm.nih.gov/pubmed/22248712.
  7. Kil, E., Choi, K., Ha, H., Xu, S., Rogers, J. A., Kim, M. R., Lee, Y., Kim, K. W., Cho, K. Y., and Lee, S., "Imprintable, Bendable and Shape-Conformable Polymer Electrolytes for Versatile-Shaped Lithium-Ion Batteries," Adv. Mater., 25, 1395-1400 (2013). https://doi.org/10.1002/adma.201204182
  8. Yamazaki, M., Electro conductive resin paste, U.S. Patent No. 4,732,702 (1988).
  9. Fujimura, K., Conductive paste, U.S. Patent No. 4,410,457 (1983).
  10. Gamota, D. R., Brazis, P., Kalyanasundaram, K., and Zhang, J., Printed Organic and Molecular Electronics, Kluwer Academic Publishers, 2004, 307-315.