DOI QR코드

DOI QR Code

청정수소생산을 위한 에탄올 수증기개질반응 및 막반응기에서의 응용

Ethanol Steam Reforming Reaction for a Clean Hydrogen Production and its Application in a Membrane Reactor

  • 임한권 (대구가톨릭대학교 화학시스템공학과)
  • Lim, Hankwon (Department of Chemical Systematic Engineering, Catholic University of Daegu)
  • 투고 : 2013.10.18
  • 심사 : 2013.12.18
  • 발행 : 2013.12.31

초록

본 총설에서는 최근 청정수소생산방법으로 큰 관심을 받고 있는 에탄올 수증기개질반응(ethanol steam reforming reaction)에 대해 소개하고자 한다. 다양한 촉매, 반응온도, 에탄올과 물의 몰비에 따른 에탄올 수증기개질반응의 반응특성 및 반응속도식(reaction rate equation)을 검토해 보고자 한다. 또한, 반응기와 분리기를 동시에 장착한 새로운 개념의 막반응기(membrane reactor)를 소개하며, 막반응기의 사용이 일반적인 충전층반응기(packed-bed reactor)에 비해 에탄올 전환율과 수소 수율에 어떠한 영향을 주는지에 대하여 고찰해 보고자 한다.

Ethanol steam reforming reaction considered as a clean hydrogen production method is introduced in this paper. Reactivity and reaction rate equation of ethanol steam reforming reaction using various catalysts, reaction temperature, and molar ratio of ethanol and water will be discussed. In addition to introducing a membrane reactor combining a reactor and a separator, the effect of the use of a membrane reactor on an ethanol conversion and hydrogen yield will be compared to those from a conventional packed-bed reactor.

키워드

참고문헌

  1. Lim, H., Gu, Y., and Oyama, S. T., "Reaction of Primary and Secondary Products in a Membrane Reactor: Studies of Ethanol Steam Reforming with a Silica-alumina Composite Membrane," J. Membr. Sci., 351, 149-159 (2010). https://doi.org/10.1016/j.memsci.2010.01.042
  2. Klouz, V., Fierro, V., Denton, P., Katz, H., and Lisse, J. P., Bouvot-Mauduit, S., and Mirodatos, C., "Ethanol Reforming for Hydrogen Production in a Hybrid Electric Vehicle: Process Optimisation," J. Power Sources, 105, 26-34 (2002). https://doi.org/10.1016/S0378-7753(01)00922-3
  3. Marino, F., Boveri, M., Baronetti, G., and Laborde, M., "Hydrogen Production from Steam Reforming of Bioethanol Using Cu/Ni/K/g-$Al_2O_3$ Catalysts. Effectof Ni," Int. J. Hydrogen Energy, 26, 665-668 (2001). https://doi.org/10.1016/S0360-3199(01)00002-7
  4. Llorca, J., Homs, N., Sales, J., Fierro, J.- L. G., and Piscina, P. R. de la, "Effect of Sodium Addition on the Performance of Co-ZnO-based Catalysts for Hydrogen Production from Bioethanol," J. Catal., 222, 470-480 (2004). https://doi.org/10.1016/j.jcat.2003.12.008
  5. Diagne, C., Idriss, H., and Kiennemann, A., "Hydrogen Production by Ethanol Steam Reforming over $Rh/CeO_2-ZrO_2$ Catalysts," Catal. Commun., 3, 565-571 (2002). https://doi.org/10.1016/S1566-7367(02)00226-1
  6. Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W., and Hao, S., "Hydrogen from Steam Reforming of Ethanol in Low and Middle Temperature Range for Fuel Cell Application," Int. J. Hydrogen Energy, 29, 1075-1081 (2004). https://doi.org/10.1016/j.ijhydene.2003.11.004
  7. Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M., and Ticianelli, E. A., "High Efficiency Steam Reforming of Ethanol by Cobalt-based Catalysts," J. Power Sources, 134, 27-32 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.052
  8. Biswas, P., and Kunzru, D., "Steam Reforming of Ethanol for Production of Hydrogen over $Ni/CeO_2-ZrO_2$ Catalyst: Effect of Support and Metal Loading," Int. J. Hydrogen Energy, 32, 969-980 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.031
  9. Kwak, B. S., Kim, J., and Kang, M., "Hydrogen Production from Ethanol Steam Reforming over Coreeshell Structured $Ni_xO_{y-},\;Fe_xO_{y-},\;and\;Co_xO_{y-}Pd $ Catalysts," Int. J. Hydrogen Energy, 35, 11829-11843 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.073
  10. Abdelkader, A., Daly, H., Saih, Y., Morgan, K., Mohamed, M. A., Halawy, S. A., and Hardacre, C., "Steam Reforming of Ethanol over $Co_3O_{4-}Fe_2O_3$ Mixed Oxides," Int. J. Hydrogen Energy, 38, 8263-8275 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.009
  11. Han, S. J., Bang, Y., Yoo. J., Seo J. G., and Song, I. K., "Hydrogen Production by Steam Reforming of Ethanol over Mesoporous $Ni-Al_2O_{3-}ZrO_2$ xerogel catalysts: Effect of Nickel Content," Int. J. Hydrogen Energy, 38, 8285-8292 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.141
  12. Xu, J., and Froment, G. F. "Methane Steam Reforming, Methanation and Water-gas Shift: I. Intrinsic Kinetics," AIChE J., 35, 88-96 (1989). https://doi.org/10.1002/aic.690350109
  13. Therdthianwong , A., Sakulkoakiet, T., and Therdthianwong, S., "Hydrogen Production by Catalytic Ethanol Steam Reforming," ScienceAsia, 27, 193-198 (2001). https://doi.org/10.2306/scienceasia1513-1874.2001.27.193
  14. Orucu, E., Gokaliler, F., Aksoylu, A. E., and Onsan, Z. I., "Ethanol Steam Reforming for Hydrogen Production over Bimetallic $Pt-Ni/Al_2O_3$," Catal. Lett., 120, 198-203 (2008). https://doi.org/10.1007/s10562-007-9269-4
  15. Akande, A., Aboudheir, A., Idem, R., and Dalai, A., "Kinetic Modeling of Hydrogen Production by the Catalytic Reforming of Crude Ethanol over a Co-precipitated $Ni/Al_2O_3$ Catalyst in a Packed Bed Tubular Reactor," Int. J. Hydrogen Energy, 31, 1707-1715 (2006). https://doi.org/10.1016/j.ijhydene.2006.01.001
  16. Yun, S., Lim, H., and Oyama, S. T., "Experimental and Kinetic Studies of the Ethanol Steam Reforming Reaction Equipped with Ultrathin Pd and Pd-Cu Membranes for Improved Conversion and Hydrogen yield," J. Membr. Sci., 409-410, 222-231 (2012). https://doi.org/10.1016/j.memsci.2012.03.059
  17. Sun, J., Qiu, X.-P., Wu, F., and Zhu, W.-T., "$H_2$ from Steam Reforming of Ethanol at Low Temperature over $Ni/Y_2O_3,\;Ni/La_2O_3\;and\;Ni/Al_2O_3$ Catalysts for Fuel-cell Application," Int. J. Hydrogen Energy, 30, 437-445 (2005). https://doi.org/10.1016/j.ijhydene.2004.11.005
  18. Vaidya, P. D., and Rodrigues, A. E., "Kinetics of Steam Reforming of Ethanol over a $Ru/Al_2O_3$ Catalyst," Ind. Eng. Chem. Res., 45, 6614-6618 (2006). https://doi.org/10.1021/ie051342m
  19. Veronica, M., Graciela, B., Norma, A., and Miguel, L., "Ethanol Steam Reforming Using Ni(II)-Al(III) Layered Double Hydroxide as Catalyst Precursor Kinetic study," Appl. Chem. Eng. J., 138, 602-607 (2008). https://doi.org/10.1016/j.cej.2007.08.035
  20. Sanchez Marcano, J. G., and Tsotsis, T. T., Catalytic Membranes and Membrane Reactors, 1st ed., WILEY-VCH, Weinheim, 2002, p.5.
  21. De Vos, R. M., and Verweij, H., "High-Selectivity, High-Flux Silica Membranes for Gas Separation," Science, 279, 1710-1711 (1998). https://doi.org/10.1126/science.279.5357.1710
  22. Kusakabe, K., Sakamoto, S., Saie, T., and Morooka, S., "Pore Structure of Silica Membranes Formed by a Sol-Gel Technique Using Tetraethoxysilane and Alkyltriethoxysilanes," Sep. Purif. Technol., 16, 139-146 (1999). https://doi.org/10.1016/S1383-5866(98)00120-8
  23. Fujii,T., Yano, T., Nakamura, K., and Miyawaki, O., "The Sol-Gel Preparation and Characterization of Nanoporous Silica Membrane with Controlled Pore Size," J. Membr. Sci.,187, 171-180 (2001). https://doi.org/10.1016/S0376-7388(01)00338-6
  24. Pakizeh, M., Omidkhah, M. R., and Zarringhalam A., "Synthesis and Characterization of New Silica Membranes Using Template-Sol-Gel Technology," Int. J. Hydrogen Energy, 32, 1825-1836 (2007).
  25. Tsapatsis, M., and Gavalas, G., "Structure and Aging Characteristics of H2-Permselective $SiO_2$-Vycor Membranes," J. Membr. Sci., 87, 281-296 (1994). https://doi.org/10.1016/0376-7388(94)87034-9
  26. Morooka, S., Yan, S., Kusakabe, K., and Akiyama, Y., "Formation of Hydrogen Permselective $SiO_2$ Membrane in Macropores of a Alumina Support Tube by Thermal Decomposition of TEOS," J. Membr. Sci., 101, 89-98 (1995). https://doi.org/10.1016/0376-7388(94)00293-8
  27. Gu, Y., and Oyama, S. T., "Ultrathin, Hydrogen-Selective Silica Membranes Deposited on Alumina-Graded Structures Prepared from Size-Controlled Boehmite Sols," J. Membr. Sci., 306, 216-227 (2007). https://doi.org/10.1016/j.memsci.2007.08.045
  28. Khatib, S. J., and Oyama, S. T., "Silica Membranes for Hydrogen Separation Prepared by Chemical Vapor Deposition (CVD)," Sep. Purif. Technol., 111, 20-42 (2013). https://doi.org/10.1016/j.seppur.2013.03.032
  29. Gu, Y., Hacarlioglu, P., and Oyama, S. T., "Hydrothermally Stable Silica-Alumina Composite Membranes for Hydrogen Separation," J. Membr. Sci., 310, 28-37 (2008). https://doi.org/10.1016/j.memsci.2007.10.025
  30. Gu, Y., and Oyama, S. T., "Permeation Properties and Hydrothermal Stability of Silica-Titania Membranes Supported on Porous Alumina Substrates," J. Membr. Sci., 345, 267-275 (2009). https://doi.org/10.1016/j.memsci.2009.09.009
  31. Kanezashi, M., and Asaeda, M., "Hydrogen Permeation Characteristics and Stability of Ni-Doped Silica Membranes in Steam at High Temperature,", J. Membr. Sci., 271, 86-93 (2006). https://doi.org/10.1016/j.memsci.2005.07.011
  32. Boffa, V., Blank, D. H. A., and Ten Elshof J. E., "Hydrothermal Stability of Microporous Silica and Niobia-Silica Membranes," J. Membr. Sci., 319, 56-263 (2008).
  33. Yan, S., Maeda, H., Kusakabe, K., and Morooka, S., "Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation," Ind. Eng. Chem. Res., 33, 616-622 (1994). https://doi.org/10.1021/ie00027a019
  34. Xomeritakis, G., and Lin, Y. S., "Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition," J. Membr. Sci., 120, 261-272 (1996). https://doi.org/10.1016/0376-7388(96)00149-4
  35. Huang, L., Chert, C. S., He, Z. D., Peng, D. K., and Meng, G. Y., "Palladium Membranes Supported on Porous Ceramics Prepared by Chemical Vapor Deposition," Thin Solid Films, 302, 98-101 (1997). https://doi.org/10.1016/S0040-6090(97)00035-7
  36. Jun, C.-S., and Lee, K.-H., "Palladium and Palladium Alloy Composite Membranes Prepared by Metal-organic Chemical Vapor Deposition Method (Cold-Wall)," J. Membr. Sci., 176, 121-130 (2000). https://doi.org/10.1016/S0376-7388(00)00438-5
  37. Yeung, K. L., Christiansen, S. C., and Varma, A., "Palladium Composite Membranes by Electroless Plating Technique: Relationships between Plating Kinetics, Film Microstructure and Membrane Performance," J. Membr. Sci., 159, 107-122 (1999). https://doi.org/10.1016/S0376-7388(99)00041-1
  38. Cheng, Y. S., and Yeung, K. L., "Effects of Electroless Plating Chemistry on the Synthesis of Palladium Membranes," J. Membr. Sci., 182, 195-203 (2001). https://doi.org/10.1016/S0376-7388(00)00563-9
  39. Gade, S. K., Thoen, P. M., and Way, J. D., "Unsupported Palladium Alloy Foil Membranes Fabricated by Electroless Plating," J. Membr. Sci., 316, 112-118 (2008). https://doi.org/10.1016/j.memsci.2007.08.022
  40. Uemiya, S., Matsuda, T., and Kikuchi, E., "Hydrogen Permeable Palladium-Silver Alloy Membrane Supported on Porous Ceramics," J. Membr. Sci., 56, 315-325 (1991). https://doi.org/10.1016/S0376-7388(00)83041-0
  41. Tong, J., Su, L., Kashima, Y., Shirai, R., Suda, H., and Matsumura, Y., "Simultaneously Depositing Pd-Ag Thin Membrane on Asymmetric Porous Stainless Steel Tube and Application to Produce Hydrogen from Steam Reforming of Methane," Ind. Eng. Chem. Res. 45, 648-655 (2006). https://doi.org/10.1021/ie050935u
  42. Peters, T., Tucho, W. M., Ramachandran A., Stange, M., Walmsley, J. C., Holmestad, R., Borg, A., and Bredesen, R., "Thin Pd-23%Ag/Stainless Steel Composite Membranes: Long- Term Stability, Life-Time Estimation and Post-Process Characterization," J. Membr. Sci., 326, 572-581 (2009). https://doi.org/10.1016/j.memsci.2008.10.053
  43. Nam, S.-E., and Lee, K.-H., "Hydrogen Separation by Pd Alloy Composite Membranes: Introduction of Diffusion Barrier," J. Membr. Sci., 192, 177-185 (2001). https://doi.org/10.1016/S0376-7388(01)00499-9
  44. Roa, F., Way, J. D., McCormick, R. L., and Paglieri, S. N., "Preparation and Characterization of Pd-Cu Composite Membranes for Hydrogen Separation," Chem. Eng. J., 93, 11-22 (2003). https://doi.org/10.1016/S1385-8947(02)00106-7
  45. Kulprathipanja, A., Alptekin, G. O., Falconer, J. L., and Way, J. D., "Pd and Pd-Cu Membranes: Inhibition of $H_2$ Permeation by $H_2S$," J. Membr. Sci., 254, 49-62 (2005). https://doi.org/10.1016/j.memsci.2004.11.031
  46. Thoen, P. M., Roa, F., and Way, J. D., "High Flux Palladium- Copper Composite Membranes for Hydrogen Separations," Desalination, 193, 224-229 (2006). https://doi.org/10.1016/j.desal.2005.09.025
  47. O'Brien, C. P., Howard, B. H., Miller, J. B., Morreale, B. D., and Gellman, A. J.,"Inhibition of Hydrogen Transport through Pd and $Pd_{47}Cu_{53} $ Membranes by $H_2S$ at $350^{\circ}C$," J. Membr. Sci., 349, 380-384 (2010). https://doi.org/10.1016/j.memsci.2009.11.070
  48. Gade, S. K., Payzant, E. A., Park, H. J., Thoen, P. M., and Way, J. D., "The Effects of Fabrication and Annealing on the Structure and Hydrogen Permeation of Pd-Au Binary Alloy Membranes," J. Membr. Sci., 340, 227-233 (2009). https://doi.org/10.1016/j.memsci.2009.05.034
  49. Chen, C.-H., and Ma, Y. H., "The Effect of $H_2S$ on the Performance of Pd and Pd/Au Composite Membrane," J. Membr. Sci., 362, 535-544 (2010). https://doi.org/10.1016/j.memsci.2010.07.002
  50. Shi, L., Goldbach, A., Zeng, G., and Xu, H., "Preparation and Performance of Thin-Layered PdAu/Ceramic Composite Membranes," Int. J. Hydrogen Energy, 35, 4201-4208 (2010).
  51. Gade, S. K., DeVoss, S. J., Coulter, K. E., Paglieri, S. N., Alptekin, G. O., and Way, J. D., "Palladium-Gold Membranes in Mixed Gas Streams with Hydrogen Sulfide: Effect of Alloy Content and Fabrication Technique," J. Membr. Sci., 378, 35-41 (2011). https://doi.org/10.1016/j.memsci.2010.11.044
  52. Gade, S. K., Keeling, M. K., Davidson, A. P., Hatlevik, O., and Way, J. D., "Palladium-Ruthenium Membranes for Hydrogen Separation Fabricated by Electroless Co-Deposition," Int. J. Hydrogen Energy, 34, 6484-6491 (2009). https://doi.org/10.1016/j.ijhydene.2009.06.037
  53. Ryi, S.-K., Li, A., Lim, C. J., and Grace, J. R., "Novel Non-Alloy Ru/Pd Composite Membrane Fabricated by Electroless Plating for Hydrogen Separation," Int. J. Hydrogen Energy, 36, 9335-9340 (2011). https://doi.org/10.1016/j.ijhydene.2010.06.014
  54. Lee, D., Hacarlioglu, P., and Oyama, S. T., "The Effect of Pressure in Membrane Reactors: Trade-off in Permeability and Equilibrium Conversion in the Catalytic Reforming of $CH_4$ with $CO_2$," Top. Catal., 29, 45-57 (2004). https://doi.org/10.1023/B:TOCA.0000024927.26174.9b
  55. Tsuru, T., Yamaguchi, K., Yoshioka, T., and Asaeda, M., "Methane Steam Reforming by Microporous Catalytic Membrane Reactors," AICHE J., 50, 2794-2805 (2004). https://doi.org/10.1002/aic.10215
  56. Tong, J., and Matsumura, Y., "Effect of Catalytic Activity on Methane Steam Reforming in Hydrogen-permeable Membrane Reactor," Appl. Catal. A, 286, 226-231 (2005). https://doi.org/10.1016/j.apcata.2005.03.013
  57. Hacarlioglu, P., Gu, Y., and Oyama, S. T., "Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor," J. Nat. Gas Chem., 15, 73-81 (2006). https://doi.org/10.1016/S1003-9953(06)60011-X
  58. Kikuchi, E., Kawabe, S., and Matsukata, M., "Steam Reforming of Methanol on $Ni/Al_2O_3$ Catalyst in a Pd-membrane Reactor," J. Jpn. Petro. Inst., 46, 93-98 (2003). https://doi.org/10.1627/jpi.46.93
  59. Tosti, S., Basile, A., Borgognoni, F., Capaldo, V., Cordiner, S., Di Cave, S., Gallucci, F., Rizzello, C., Santucci, A., and Traversa, E., "Low Temperature Ethanol Steam Reforming in a Pd-Ag Membrane Reactor Part 1: Ru-based Catalyst," J. Membr. Sci., 308, 250-257 (2008). https://doi.org/10.1016/j.memsci.2007.10.001
  60. Tosti, S., Basile, A., Borgognoni, F., Capaldo, V., Cordiner, S., Di Cave, S., Gallucci, F., Rizzello, C., Santucci, A., and Traversa, E., "Low-temperature Ethanol Steam Reforming in a Pd-Ag Membrane Reactor Part 2. Pt-based and Ni-based Catalysts and General Comparison," J. Membr. Sci., 308, 258-263 (2008). https://doi.org/10.1016/j.memsci.2007.09.063
  61. Yu, C.-Y., Lee, D.-W., Park, S.-J., Lee, K.-Y., and Lee, K.-H., "Ethanol Steam Reforming in a Membrane Reactor with Pt- Impregnated Knudsen Membranes," Appl. Catal. B, 86, 121-126 (2009). https://doi.org/10.1016/j.apcatb.2008.08.006
  62. Lopez, E., Divins, N. J., and Llorca, J., "Hydrogen Production from Ethanol over Pd-Rh/$CeO_2$ with a Metallic Membrane Reactor," Catal. Today, 193, 145-150 (2012). https://doi.org/10.1016/j.cattod.2012.06.030
  63. Lim, H., Gu, Y., and Oyama, S. T., "Studies of the Effect of Pressure and Hydrogen Permeance on the Ethanol Steam Reforming Reaction with Palladium- and Silica-Based Membranes," J. Membr. Sci., 396, 119-127 (2012). https://doi.org/10.1016/j.memsci.2012.01.004
  64. Oyama, S. T., and Lim, H.,, "An Operability Level Coefficient (OLC) as a Useful Tool for Correlating the Performance of Membrane Reactors," Chem. Eng. J., 151, 351-358 (2009). https://doi.org/10.1016/j.cej.2009.04.017

피인용 문헌

  1. Feasibility Study of Employing a Catalytic Membrane Reactor for a Pressurized CO2and Purified H2Production in a Water Gas Shift Reaction vol.20, pp.4, 2014, https://doi.org/10.7464/ksct.2014.20.4.425