DOI QR코드

DOI QR Code

Molecular Dynamics Simulation of a Small Drop of Liquid Argon

  • Lee, Song Hi (Department of Chemistry, Kyungsung University)
  • Received : 2012.07.20
  • Accepted : 2012.08.31
  • Published : 2012.11.20

Abstract

Results for molecular dynamics simulation method of small liquid drops of argon (N = 1200-14400 molecules) at 94.4 K through a Lennard-Jones intermolecular potential are presented in this paper as a preliminary study of drop systems. We have calculated the density profiles ${\rho}(r)$, and from which the liquid and gas densities ${\rho}_l$ and ${\rho}_g$, the position of the Gibbs' dividing surface $R_o$, the thickness of the interface d, and the radius of equimolar surface $R_e$ can be obtained. Next we have calculated the normal and transverse pressure tensor ${\rho}_N(r)$ and ${\rho}_T(r)$ using Irving-Kirkwood method, and from which the liquid and gas pressures ${\rho}_l$ and ${\rho}_g$, the surface tension ${\gamma}_s$, the surface of tension $R_s$, and Tolman's length ${\delta}$ can be obtained. The variation of these properties with N is applied for the validity of Laplace's equation for the pressure change and Tolman's equation for the effect of curvature on surface tension through two routes, thermodynamic and mechanical.

Keywords

References

  1. Gibbs, G. W. Collected Works; Yale Univ. Press: New Haven, 1948, Vol. 1.
  2. Rowlinson, J. S.; Widom, B. Theory of Capillarity; Oxford: Clarendon: 1982.
  3. Tolman, R. C. J. Chem. Phys. 1949, 17, 333. https://doi.org/10.1063/1.1747247
  4. Koenig, F. O. J. Chem. Phys. 1950, 18, 449. https://doi.org/10.1063/1.1747660
  5. Buff, F. P. J. Chem. Phys. 1951, 19, 1591. https://doi.org/10.1063/1.1748127
  6. Hill, T. L. J. Phys. Chem. 1952, 56, 526. https://doi.org/10.1021/j150496a027
  7. Kond, S. J. Chem. Phys. 1956, 25, 662. https://doi.org/10.1063/1.1743024
  8. Schofield, D.; Henderson, J. R. Proc. R. Soc. London 1982, Ser. A 379, 231. https://doi.org/10.1098/rspa.1982.0015
  9. Baus, M.; Lovett, R. Phys. Rev. Lett. 1990, 65, 1781. https://doi.org/10.1103/PhysRevLett.65.1781
  10. Ono, S.; Kondo, S. In Encyclopedia of Physics; Flugge, S., Ed.; Springer: Berlin, 1960; Vol. 10, Sec. 37, p 134.
  11. Buff, P. F. J. Chem. Phys. 1955, 23, 419. https://doi.org/10.1063/1.1742005
  12. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64.
  13. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637. https://doi.org/10.1063/1.442716
  14. Hoover, W. G. Phys. Rev. A 1985, 31, 1695. https://doi.org/10.1103/PhysRevA.31.1695
  15. Nose, S. Mol. Phys. 1984, 52, 255. https://doi.org/10.1080/00268978400101201
  16. Thompson, S. M.; Gubbins, K. E.; Walton, J. P. R. B.; Chantry, R. A. R.; Rowlinson, J. S. J. Chem. Phys. 1984, 81, 530. https://doi.org/10.1063/1.447358
  17. Tsai, D. H. J. Chem. Phys. 1978, 70, 1375.
  18. Chapela, G. A.; Saville, G.; Thompson, S. M.; Rowlinson, J. S. J. Chem. Soc. Faraday Trans. II 1977, 8, 133.
  19. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/fluid (accessed 2011).
  20. Lee, S. H. Bull. Kor. Chem. Soc. 2012, 33, 167. https://doi.org/10.5012/bkcs.2012.33.1.167
  21. Lee, S. H. Bull. Kor. Chem. Soc. 2012, 33, 3039. https://doi.org/10.5012/bkcs.2012.33.9.3039

Cited by

  1. A molecular dynamics investigation of the surface tension of water nanodroplets and a new technique for local pressure determination through density correlation vol.148, pp.14, 2018, https://doi.org/10.1063/1.5004985
  2. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations (15 pages) vol.140, pp.7, 2012, https://doi.org/10.1063/1.4865256