DOI QR코드

DOI QR Code

Influence of SiO2 Capping and Annealing on the Luminescence Properties of Larva-Like GaS Nanostructures

  • Kim, Hyunsu (Department of Materials science and Engineering, Inha University) ;
  • Jin, Changhyun (Department of Materials science and Engineering, Inha University) ;
  • Park, Sunghoon (Department of Materials science and Engineering, Inha University) ;
  • Lee, Chongmu (Department of Materials science and Engineering, Inha University)
  • Received : 2012.06.27
  • Accepted : 2012.08.01
  • Published : 2012.11.20

Abstract

Larva-like GaS nanostructures synthesized by the thermal evaporation of Ga metals and S powders were coated with $SiO_2$ by the sputtering technique. Transmission electron microscopy and X-ray diffraction analyses revealed that the cores and shells of the GaS-core/$SiO_2$-shell larva-like nanostructures were single crystal wurtzite-type hexagonal structured-GaS and amorphous $SiO_2$, respectively. Photoluminescence (PL) measurements at room temperature showed that the passivation of the larva-like GaS nanostructures was successfully achieved with $SiO_2$ without nearly harming the major emission from the wires. However, subsequent thermal annealing treatment was found to be undesirable owing to the degradation of their emission in intensity.

Keywords

References

  1. Gasanly, N. M.; Aydinli, A.; Ozkan, H.; Kocabas, C. Solid State Commun. 2000, 116, 147. https://doi.org/10.1016/S0038-1098(00)00292-1
  2. Khler, Th.; Frauenheim, Th.; Hajnal, Z.; Seifert, G. Phys. Rev. B 2004, 69, 193403. https://doi.org/10.1103/PhysRevB.69.193403
  3. Lieth, R. M. A. Preparation and Crystal Growth of Materials with Layered Structures; D. Reidel Publishing: Dordrecht, The Netherlands, 1977.
  4. Gautam, U. K.; Vivekchand, S. R. C.; Govindaraj, A.; Kulkarni, G. U.; Selvi, N. R.; Rao, C. N. R. J. Am. Chem. Soc. 2005, 127, 3658. https://doi.org/10.1021/ja042294k
  5. Aono, T.; Kase, K.; Kinoshita, A. J. Appl. Phys. 1993, 74, 2818. https://doi.org/10.1063/1.354632
  6. Xin, Q. S.; Conrad, S.; Zhu, X. Y. Appl. Phys. Lett. 1996, 69, 1244. https://doi.org/10.1063/1.117425
  7. Shen, G. Z.; Bando, Y.; Liu, B.; Tang, C.; Huang, Q.; Golberg, D. Chem. Eur. J. 2006, 12, 2987. https://doi.org/10.1002/chem.200500937
  8. Kim, H. W.; Kim, N. H. Adv. Appl. Ceram. 2006, 105, 84. https://doi.org/10.1179/174367606X95772
  9. Panda, S. K.; Datta, A.; Sinha, G.; Chaudhuri, S.; Chavan, P. G.; Patil, S. S.; More, M. A.; Joag, D. S. J. Phys. Chem. C 2008, 112, 6240. https://doi.org/10.1021/jp712083d
  10. Chen, C.; Guo, H. B.; Shapiro, I. P.; Peng, H.; Zhao, X. F.; Xiao, P.; Gong, S. K. Adv. Appl. Ceram. 2010, 109, 95. https://doi.org/10.1179/174367509X12503626841479
  11. Lauhon, L. J.; Gudiksen, M. S.; Wang, D.; Lieber, C. M. Nature 2002, 420, 57. https://doi.org/10.1038/nature01141
  12. Morales, A. M.; Lieber, C. M. Science 1998, 279, 208. https://doi.org/10.1126/science.279.5348.208
  13. Li, Y. B.; Bando, Y.; Goldberg, D.; Uemura, Y. Appl. Phys. Lett. 2003, 83, 3999. https://doi.org/10.1063/1.1626259
  14. Liang, X.; Tan, S.; Tang, Z.; Kotov, N. A. Langmuir 2004, 20, 1016. https://doi.org/10.1021/la035908s
  15. Bartzsch, H.; Glâ, D.; Bcher, B.; Frach, P.; Goedicke, K. Surf. Coat. Technol. 2003, 174-175, 774. https://doi.org/10.1016/S0257-8972(03)00384-0
  16. Pan, A.; Wang, S.; Liu, R.; Li, C.; Zou, B. Small 2005, 1, 1058. https://doi.org/10.1002/smll.200500169
  17. Chang, Y.; Wang, M.; Chen, X.; Ni, S.; Qiang, W. Solid State Comm. 2007, 142, 295. https://doi.org/10.1016/j.ssc.2007.02.019
  18. Kim, N. H.; Kim, H. W.; Seoul, C.; Lee, C. Mater. Sci. Eng. B 2004, 111, 131. https://doi.org/10.1016/j.mseb.2004.04.002
  19. Park, S.; Kim, H.; Lee, J. W.; Kim, H. W.; Lee, C. J. Kor. Phys. Soc. 2008, 53, 657. https://doi.org/10.3938/jkps.53.657
  20. Jun, J.; Jin, C.; Kim, H.; Kang, J.; Lee, C. Appl. Phys. A 2009, 96, 813. https://doi.org/10.1007/s00339-009-5303-2
  21. Park, S.; Jun, J.; Kim, H. W.; Lee, C. Solid State Comm. 2009, 149, 315. https://doi.org/10.1016/j.ssc.2008.11.037
  22. Jun, J.; Jin, C.; Kim, H.; Park, S.; Lee, C. Appl. Surf. Sci. 2009, 255, 8544. https://doi.org/10.1016/j.apsusc.2009.06.006
  23. Jin, C.; Kim, H.; Kim, H. W.; Lee, C. J. Luminescence 2010, 130, 516. https://doi.org/10.1016/j.jlumin.2009.10.024
  24. Jin, C.; Kim, H.; Baek, K.; Kim, H. W.; Lee, C. Cryst. Res. Technol. 2010, 45, 199. https://doi.org/10.1002/crat.200900648
  25. Wang, Y.; Tang, Z.; Liang, X.; Liz-Marzán, L. M.; Kotov, N. A. Nano Lett. 2004, 4, 225. https://doi.org/10.1021/nl0349505
  26. Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89. https://doi.org/10.1063/1.1753975
  27. Aydinli, A.; Gasanly, N. M. Goksen, J. Appl. Phys. 2000, 88, 7144. https://doi.org/10.1063/1.1323515
  28. Shigetomi, S.; Ikari, T. J. Appl. Phys. 2007, 102, 033701. https://doi.org/10.1063/1.2764218
  29. Barin, I. Thermochemical Data of Pure Substances, 3rd Ed.; VCH: Weinheim: Basel, 1995.
  30. Meek, R. L. J. Amer. Cer. Soc. 1973, 56, 341. https://doi.org/10.1111/j.1151-2916.1973.tb12512.x
  31. Harwig, T.; Kellendouk, F. J. Solid State Chem. 1978, 24, 255. https://doi.org/10.1016/0022-4596(78)90017-8
  32. Vasil'tsiv, V. I.; Zakharko, Ya. M.; Prim, Ya. I. Ukr. Fiz. Zh. 1988, 33, 255.