DOI QR코드

DOI QR Code

Implementation of a Robust Fuzzy Adaptive Speed Tracking Control System for Permanent Magnet Synchronous Motors

  • Jung, Jin-Woo (Division of Electronics and Electrical Engineering, Dongguk University) ;
  • Choi, Han Ho (Division of Electronics and Electrical Engineering, Dongguk University) ;
  • Lee, Dong-Myung (School of Electronic and Electrical Engineering, Hongik University)
  • Received : 2012.04.16
  • Published : 2012.11.20

Abstract

This paper presents a fuzzy adaptive speed controller that guarantees a fast dynamic behavior and a precise trajectory tracking capability for surfaced-mounted permanent magnet synchronous motors (SPMSMs). The proposed fuzzy adaptive control strategy is simple and easy to implement. In addition, the proposed speed controller is very robust to system parameter and load torque variations because it does not require any accurate parameter values. The global stability of the proposed control system is analytically verified. To evaluate the proposed fuzzy adaptive speed controller, both simulation and experimental results are shown under motor parameter and load torque variations on a prototype SPMSM drive system.

Keywords

References

  1. H. S. Kang, C. K. Kim, and Y. S. Kim, "Position control for interior permanent magnet synchronous motors using an adaptive integral binary observer," Journal of Electrical Engineering & Technology, Vol. 4, No. 2, pp. 240-248, Jun. 2009. https://doi.org/10.5370/JEET.2009.4.2.240
  2. Y. D. Son and G. H. Kang, "Drive system design for a permanent magnet motor with independent excitation winding for an electric bicycle," Journal of Electrical Engineering & Technology, Vol. 5, No. 4, pp. 623-630, Nov. 2010. https://doi.org/10.5370/JEET.2010.5.4.623
  3. K. Hartani, Y. Miloud, and A. Miloudi, "Improved direct torque control of permanent magnet synchronous electrical vehicle motor with proportional-integral resistance estimator," Journal of Electrical Engineering & Technology, Vol. 5, No. 3, pp. 451-461, Sep. 2010. https://doi.org/10.5370/JEET.2010.5.3.451
  4. K. Y. Cho, S. S. Hong, D. S. Oh, and M. J. Youn, "Speed control of permanent magnet synchronous motor using boundary layer state observer," Electronics Letters, Vol. 26, No. 25, pp. 2081-2083, 1990. https://doi.org/10.1049/el:19901341
  5. K. B. Lee and F. Blaabjerg, "Robust and stable disturbance observer of servo system for low-speed operation," IEEE Trans. Ind. Appl., Vol. 43, No. 3, pp. 627-635, May/Jun. 2007. https://doi.org/10.1109/TIA.2007.895704
  6. S. H. Choi, J. S. Ko, J. S. Park, and S. C. Hong, "Precise position control using a PMSM with a disturbance observer containing a system parameter compensator," IEE Proc.-Electr. Power Appl., Vol. 152, No. 6, pp. 1573-1577, 2005 https://doi.org/10.1049/ip-epa:20045200
  7. Y. Zhang, C. M. Akujuobi, W. H. Ali, C. L. Tolliver, and L. S. Shieh, "Load disturbance resistance speed controller design for PMSM," IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1198-1208, Jun. 2006. https://doi.org/10.1109/TIE.2006.878313
  8. W. T. Su and C. M. Liaw, "Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer," IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 505-517, Mar. 2006. https://doi.org/10.1109/TPEL.2005.869729
  9. T. H. Liu, H. T. Pu, and C. K. Lin, "Implementation of an adaptive position control system of a permanent-magnet synchronous motor and its application," IET Elect. Power Appl., Vol. 4, No. 2, pp. 121-130, Feb. 2010. https://doi.org/10.1049/iet-epa.2009.0036
  10. C. K. Lin, T. H. Liu, and S. H. Yang, "Nonlinear position controller design with input-output linearisation technique for an interior permanent magnet synchronous motor control system," IET Power Electron., Vol. 1, No. 1, pp. 14-26, Mar. 2008. https://doi.org/10.1049/iet-pel:20070177
  11. J. Solsona, M. I. Valla, and C. Muravchik, "Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation," IEEE Trans. Energy Convers., Vol. 15, No. 2, pp. 163-168, Jun. 2000. https://doi.org/10.1109/60.866994
  12. Yi Yang, D. M. Vilathgamuwa, and M. A. Rahman, "Implementation of an artificial neural network based real-time adaptive controller for interior permanent motor drive," IEEE Trans. Ind. Appl., Vol. 39, No. 1, pp. 96-104, Jan./Feb. 2003. https://doi.org/10.1109/TIA.2002.807233
  13. M. N. Uddin, M. A. Abido, and M. A. Rahman "Development and implementation of a hybrid intelligent controller for interior permanent motor dives," IEEE Trans. Ind. Appl., Vol. 40, No. 1, pp. 68-76, Jan/Feb. 2004. https://doi.org/10.1109/TIA.2003.821797
  14. M. N. Uddin and M. A. Rahman, "High-speed control of IPMSM drives using improved fuzzy logic algorithms," IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 190-199, Feb. 2007. https://doi.org/10.1109/TIE.2006.888781
  15. Y. S. Kung, C. C. Huang, and M. H. Tsai, "FPGA realization of an adaptive fuzzy controller for PMLSM drive," IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 2923-2932, Aug. 2009. https://doi.org/10.1109/TIE.2009.2023638
  16. M. Cheng, Q. Sun, and E. Zhou, "New self-tuning fuzzy PI control of a novel doubly salient permanent-magnet motor drive," IEEE Trans. Ind. Electron., Vol. 53, No. 3, pp. 814-821, Jun. 2006. https://doi.org/10.1109/TIE.2006.874269
  17. S. Li and Z. Liu, "Adaptive speed control for permanent magnet synchronous motor system with variations of load inertia," IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3050-3059, Aug. 2009. https://doi.org/10.1109/TIE.2009.2024655
  18. G. Feng, "A survey on analysis and design of model based fuzzy control systems," IEEE Trans. Fuzzy Systems, Vol. 14, No. 5, pp. 676-697, Oct. 2006. https://doi.org/10.1109/TFUZZ.2006.883415
  19. J. L. Castro, "Fuzzy logic controllers are universal approximators," IEEE Trans. Syst., Man, Cybern., Vol. 25, No. 4, pp. 629-635, Apr. 1995. https://doi.org/10.1109/21.370193
  20. F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot Manipulators, Macmillan, 1993.
  21. H. Z. Jin and J. M. Lee, "An RMRAC current regulator for permanent magnet synchronous motor based on statistical model interpretation," IEEE Trans. Ind. Electron., Vol. 56, No. 1, pp. 169-177, Jan. 2009. https://doi.org/10.1109/TIE.2008.928554
  22. R. H. Middleton and G. C. Goodwin, Digital Control and Estimation: A Unified Approach, Englewood Cliffs, NJ: Prentice - Hall, 1990.

Cited by

  1. Speed Control for a PMSM Servo System Using Model Reference Adaptive Control and an Extended State Observer vol.14, pp.3, 2014, https://doi.org/10.6113/JPE.2014.14.3.549
  2. Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance vol.103, pp.10, 2016, https://doi.org/10.1080/00207217.2016.1138523
  3. Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters vol.14, pp.5, 2014, https://doi.org/10.6113/JPE.2014.14.5.980