DOI QR코드

DOI QR Code

Effects of Concentrate Feeding on Rumen Papillae Development in Hanwoo Calves before Weaning

이유 전 농후사료 (무조사료) 급여가 한우 송아지의 반추위 유두 발달에 미치는 영향

  • Kim, Wan Young (Korea National College of Agriculture & Fisheries) ;
  • Lee, Sung Hoon (Gyeongsangnamdo Livestock Promotion Research Institute) ;
  • Hwang, Jin Ho (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Seong Ki (Korea National College of Agriculture & Fisheries) ;
  • Lee, Sung Sill (Division of Applied Life Science, Gyeongsang National University) ;
  • Yeo, Joon Mo (Korea National College of Agriculture & Fisheries)
  • Received : 2012.07.16
  • Accepted : 2012.10.24
  • Published : 2012.10.31

Abstract

The present study was conducted to investigate the effects of concentrate feeding on rumen papillae development in suckling Hanwoo calves before weaning (60 days of age). Twenty-four Hanwoo calves (12 heifers and 12 bulls) at six days of age were randomly assigned to one of three dietary treatments [hay and two levels (low and high) of concentrate feeding] and given each diet with free access to their dams for suckling until 60 days of age. At 60 days of age, two calves from each treatment were sacrificed and used for post-mortem examination of rumen papillae development. Feed intake between 31 and 60 days of age was significantly higher (P<0.05) for the high concentrate treatment (380.2 g/d) than for other treatments (58.3 and 76.9 g/d for hay and low concentrate treatments, respectively). Although feed intake showed a large difference between the low and high concentrate treatments, body weights at birth and 60 days of age were similar between the two treatments, suggesting that calves in the low concentrate feeding suckled more milk from their dams than those in the high concentrate feeding. The ratio of reticulo-rumen weight to body weight at 60 days of age was significantly increased (P<0.05) in the high concentrate (1.39%), compared with those in the hay (0.85%) and low concentrate (1.06%) treatments. Furthermore, the high concentrate feeding significantly increased both rumen papillae length and width, compared with the hay and low concentrate feeding group. This was also detected clearly by visual observation. The blood concentration of ${\beta}$-hydroxybutyrate was significantly higher for the high concentrate (176.4 ${\mu}mol/L$) than for other treatments (58.9 and 59.2 ${\mu}mol/L$ for the hay and the low concentrate group, respectively). In conclusion, the results of the present study showed that, to achieve a large development of rumen papillae before weaning (60 days of age) in suckling Hanwoo calves, the amount of concentrate intake should be important. And also the results implied that hay might not be included in the diet for suckling Hanwoo calves before weaning (60 days of age).

본 연구는 이유 (생후 2개월) 전 농후사료 (무조사료) 급여가 한우 어린 송아지의 반추위 유두 발달에 미치는 영향을 조사하기 위하여 수행하였다. 총 24두 (수 12두, 암 12두)의 생후 6일령 한우 어린송아지를 3처리구에 배치하였고, 각각 어미젖을 포유할 수 있는 시설에서 사육하였다. 처리구는 크게 농후사료구 (무조사료구)와 조사료구로 구분하였고, 농후사료구는 농후사료의 섭취량에 따른 반추위 발달 양상을 조사하기 위하여, 사료섭취량을 기준으로 고농후사료급여구와 저농후사료급여구로 세분화하였다. 31~60일령의 1일 사료 섭취량은 고농후사료급여구 (380.2 g/d)가 저농후사료급여구 (76.9 g/d) 및 조사료구 (58.3 g/d)에 비하여 유의적 (P<0.05)으로 높았다. 고농후사료급여구와 저농후사료급여구의 1일 사료섭취량은 큰 차이를 보였지만 생시체중 및 60일령 체중은 비슷하게 나타나, 저농후사료급여구의 성장에 부족한 영양분은 어미소의 포유로부터 충족된 것으로 사료되었다. 60일령의 체중 대비 반추위 무게의 비율은 고농후사료급여구 (1.39%)가 저농후사료급여구 (1.06%) 및 조사료구 (0.85%) 보다 유의적 (P<0.05)으로 높게 나타났다. 뿐만 아니라 고농후사료급여구의 반추위 유두 길이 및 두께도 다른 처리구들에 비하여 유의적 (P<0.05)으로 높았다. 이는 육안으로도 그 차이를 뚜렷이 구분할 수 있었다. 60일령 혈중 ${\beta}$-hydroxybutyrate의 농도도 고농후사료급여구 (176.4 ${\mu}mol/L$)가 저농후사료급여구 (59.2 ${\mu}mol/L$) 및 조사료구 (58.9 ${\mu}mol/L$) 보다 유의적 (P<0.05)으로 높았다. 본 연구의 결과는 이유 전 (생후 2개월) 한우 송아지의 반추위 발달이 농후사료 섭취량에 의하여 크게 영향을 받으며, 우유와 조사료는 반추위 발달에 미치는 영향이 매우 낮음을 제시하였다.

Keywords

References

  1. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA.
  2. Baldwin, R. L., McLeod VI, K. R., Klotz, J. L. and Heitmann, R. N. 2004. Rumen development, intestinal growth and hepatic metabolism in the pre- and post-weaning ruminant. J. Dairy Sci. 87 (ESuppl.):E55-E65. https://doi.org/10.3168/jds.S0022-0302(04)70061-2
  3. Beck, U., Emmanuel, B. and Giesecke, D. 1984. The ketogenic effect of glucose in rumen epithelium of ovine and bovine origin. Comp. Biochem. Physiol. 77B:517-521.
  4. Heinrichs, J. 2005. Rumen Development in the Dairy Calf. Advances in Dairy Technology. 17:179-187.
  5. Lane, M. A. and Jesse, B. W. 1997. Effects of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep. J. Dairy Sci. 80:740-746. https://doi.org/10.3168/jds.S0022-0302(97)75993-9
  6. Lane, M. A., Baldwin, R. L. and Jesse, B. W. 2000. Sheep rumen metabolic development in response to age and dietary treatments. J. Anim. Sci. 78:1990-1996. https://doi.org/10.2527/2000.7871990x
  7. Lesmeister, K. E. and Heinrichs, A. J. 2004. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. J. Dairy Sci. 87: 3439-3450. https://doi.org/10.3168/jds.S0022-0302(04)73479-7
  8. Lesmeister, K. E., Heinrichs, A. J. and Gabler, M. T. 2004a. Effects of supplemental yeast (Sacchromyces cerevisiae) culture on rumen development, growth characteristics and blood parameters in neonatal dairy calves. J. Dairy Sci., 87:1832-1839. https://doi.org/10.3168/jds.S0022-0302(04)73340-8
  9. Lesmeister, K. E., Tozer, P. R. and Heinrichs, A. J. 2004b. Development and analysis of a rumen tissue sampling procedure. J. Dairy Sci. 87:1336-1344. https://doi.org/10.3168/jds.S0022-0302(04)73283-X
  10. National Institute of Animal Science, RDA. 2007. Korean Feeding Standard for Hanwoo. Sangrok. Korea. pp. 29-38.
  11. National Research Council. 2001. Nutrient Requirements of Dairy Cattle, Seventh Revised Ed. Washington, D.C.: National Academy Press. pp. 214-229.
  12. Quigley, III, J. D., Caldwell, L. A., Sinks, G. D. and Heitmann, R. N. 1991. Changes in blood glucose, nonesterified fatty acids, and ketones in response to weaning and feed intake in young calves. J. Dairy Sci. 74:250-257. https://doi.org/10.3168/jds.S0022-0302(91)78167-8
  13. Sander, E. G., Warner, H. N., Harrison, H. N. and Loosli, J. K. 1959. The stimulatory effects of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf. J. Dairy Sci. 42:1600-1605. https://doi.org/10.3168/jds.S0022-0302(59)90772-6
  14. SAS. 2000. $SAS/STAT^{(R)}$ User's guide (Release 8.1 ed.). Statistics, SAS Inst., Inc., Cary, NC.
  15. Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of statistics: A biometrical approach (2nd Ed.). McGraw-Hill Book Co., New York.
  16. Tamate, H., McGilliard, A. D., Jacobson, N. L. and Getty, R. 1962. Effects of various dietaries on the anatomical development of the stomach in the calf. J. Dairy Sci. 45:408-420. https://doi.org/10.3168/jds.S0022-0302(62)89406-5
  17. Wang, L-Q., Baldwin VI, R. L. and Jesse, B. W. 1996. Identification of two cDNA clones encoding small proline-rich proteins expressed in sheep ruminal epithelium. Biochem. J. 317:225-233. https://doi.org/10.1042/bj3170225
  18. Warner, R. G., Flatt, W. P. and Loosli, J. K. 1956. Dietary factors influencing the development of the ruminant stomach. Agric. Food Chem. 4:788-792. https://doi.org/10.1021/jf60067a003
  19. Weigland, E., Young, J. W. and McGilliard, A. D. 1975. Volatile fatty acid metaboilsm from cattle fed hay and grain. J. dairy Sci. 58:1294-1300. https://doi.org/10.3168/jds.S0022-0302(75)84709-6
  20. Williamson, D. H., and Mellanby, J. 1974. D-(−)-3-Hydroxybutyrate. In Methods of Enzymatic Analysis. Vol. 4 H. U. Bergmeyer, ed. Acad. Press, London, UK. pp. 1836-1840.