DOI QR코드

DOI QR Code

미강을 이용한 해양미생물 Bacillus atrophaeus LBH-18 유래의 carboxymethylcellulase 생산의 최적화

Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry

  • 김이준 (동아대학교 대학원 의생명과학과) ;
  • 고와 (동아대학교 대학원 의생명과학과) ;
  • 이유정 (동아대학교 대학원 의생명과학과) ;
  • 이상운 (동아대학교 대학원 의생명과학과) ;
  • 정정한 (동아대학교 생명공학과) ;
  • 이진우 (동아대학교 BK21 생물자원 실버바이오사업 인력양성단)
  • Kim, Yi-Joon (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Cao, Wa (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Lee, Yu-Jeong (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Lee, Sang-Un (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Jeong, Jeong-Han (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A Univeristy) ;
  • Lee, Jin-Woo (BK21 Bio-Silver Program of Dong-A University)
  • 투고 : 2012.07.30
  • 심사 : 2012.10.10
  • 발행 : 2012.10.30

초록

Carboxymethylcellulase를 생산하는 미생물을 해수에서 분리하여 16S rDNA의 염기서열을 분석하고 계통 발생학 방법으로 비교한 결과, Bacillus atrophaeus로 확인되었다. 이 해양 미생물을 B. atrophaeus LBH-18로 명명하였으며 response surface method (RSM)를 사용하여 carboxymethylcellulase의 생산 조건을 최적화하였다. 이 균주의 생육에 최적인 미강, 펩톤 및 배지의 초기 pH는 68.1 g/l, 9.1 g/l 및 7.0이었으나, carboxymethylcellulase의 생산에 최적인 조건은 각각 55.2 g/l, 6.6 g/l 및 7.1이었다. 이 균주의 생육과 carboxymethylcellulase의 생산에 최적인 온도는 $30^{\circ}C$이었다. 이 균주의 생육에 최적인 생물배양기의 교반속도 및 통기량은 324 rpm 및 0.9 vvm이었으나, carboxymethylcellulase의 생산에 최적인 조건은 각각 343 rpm 및 0.6 vvm이었다. 파이롯트 규모의 생물배양기를 사용하여 실험한 결과, 이 균주의 생육과 carboxymethylcellulase의 생산에 최적인 내압은 0.06 MPa이었다. 최적 조건의 내압으로 배양한 결과, 이 균주의 carboxymethylcellulase의 생산성은 127.5 U/ml이었으며, 이 결과는 내압을 가하지 않고 배양한 경우에 비하여 1.32배 향상된 것이다. 본 연구를 통하여 쌀 도정 공정의 부산물인 미강을 기질로 개발하였으며 해양 미생물을 사용하여 carboxymethylcellulase의 생산기간을 7~10일에서 3일로 단축시켰다.

A microorganism producing carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus atrophaeus. This species was designated as B. atrophaeus LBH-18 based on its evolutionary distance and the phylogenetic tree resulting from 16S rDNA sequencing and the neighbor-joining method. The optimal conditions for rice bran (68.1 g/l), peptone (9.1 g/l), and initial pH (7.0) of the medium for cell growth was determined by Design Expert Software based on the response surface method; conditions for production of CMCase were 55.2 g/l, 6.6 g/l, and 7.1, respectively. The optimal temperature for cell growth and the production of CMCase by B. atrophaeus LBH-18 was $30^{\circ}C$. The optimal conditions of agitation speed and aeration rate for cell growth in a 7-l bioreactor were 324 rpm and 0.9 vvm, respectively, whereas those for production of CMCase were 343 rpm and 0.6 vvm, respectively. The optimal inner pressure for cell growth and production of CMCase in a 100-l bioreactor was 0.06 MPa. Maximal production of CMCase under optimal conditions in a 100-l bioreactor was 127.5 U/ml, which was 1.32 times higher than that without an inner pressure. In this study, rice bran was developed as a carbon source for industrial scale production of CMCase by B. atrophaeus LBH-18. Reduced time for the production of CMCase from 7 to 10 days to 3 days by using a bacterial strain with submerged fermentation also resulted in increased productivity of CMCase and a decrease in its production cost.

키워드

참고문헌

  1. Alam, M. Z., Muyibi, S. A. and Wahid, R. 2008. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresour. Technol. 99, 4709-4716. https://doi.org/10.1016/j.biortech.2007.09.072
  2. Blumer-Schuette, S. E., Kataeva, I., Westpheling, J., Adams, M. W. W. and Kelly, R. M. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
  3. Chen, M., Zhao, J. and Xia, L. 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71, 411-415. https://doi.org/10.1016/j.carbpol.2007.06.011
  4. Domingues, F. C., Queiroz, J. A., Cabral, J. M. S. and Fonseca, L. P. 2000. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 26, 394-401. https://doi.org/10.1016/S0141-0229(99)00166-0
  5. Elibol, M. and Ozer, D. 2000. Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem. 36, 325-329. https://doi.org/10.1016/S0032-9592(00)00226-0
  6. Emtiazi, G. and Nahvi, I. 2000. Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37. https://doi.org/10.1016/S0961-9534(00)00015-5
  7. Feng, Y., He, Z., Ong, S. L., Hu, J., Zhang, Z. and Ng, W. J. 2003. Optimization of agitation, aeration, and temperature conditions for maximum $\beta$-mannanase production. Enzyme Microb. Technol. 32, 282-289. https://doi.org/10.1016/S0141-0229(02)00287-9
  8. Gao, W., Kim, Y. J., Chung, C. H., Li, J. and Lee, J. W. 2010. Pilot-scale optimization of parameters related to dissolved oxygen for mass production of pullulan by Aureobasidium pullulans HP-2001. J. Life Sci. 20, 1433-1442. https://doi.org/10.5352/JLS.2010.20.10.1433
  9. Howard, R. L., Abotsi, E., Jansen von Rensburg, E. L. and Howard, S. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2, 602-619.
  10. Jo, K. I., Lee, Y. J., Kim, B. K., Lee, B. H., Chung, C. H., Nam, S. W., Kim, S. K. and Lee, J. W. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
  11. Jung, I. S., Kim, Y. J., Song, H. J., Gal, S. W. and Choi, Y. J. 2008. Purification and properties of a novel extracellular agarase from marine bacterium, Sphingomonas paucimobilis AS-1. J. Life Sci. 18, 103-108. https://doi.org/10.5352/JLS.2008.18.1.103
  12. Kang, S., Park, W, Y. S., Lee, J. S., Hong, S. I. and Kim, S. W. 2004. Production of cellulase and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91, 153-156. https://doi.org/10.1016/S0960-8524(03)00172-X
  13. Khambhaty, Y., Mody, K. and Jha, B. 2007. Purification and characterization of $\kappa$-carrageenase from a novel $\gamma$ -proteobacterium, Pseudomonas elongate (MTCC 5261) syn. Microbulbifer elongates comb. Nov. Biotechnol. Bioproccess Eng. 12, 668-675. https://doi.org/10.1007/BF02931084
  14. Kim, B. K., Lee, B. H., Y. J. Lee, Y. J., Jin, I. H., Chung, C. H. and Lee, J. W. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
  15. Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical method. Kor. J. Chem. Eng. 12, 384-391.
  16. Kim, H. J., Gao, W., Lee, Y. J., Chung, C. H. and Lee, J. W. 2010. Characterization of acidic carboxymethylcellulase produced by a marine microorganism, Psychrobacter aquimaris LBH-10. J. Life Sci. 20, 487-495. https://doi.org/10.5352/JLS.2010.20.4.487
  17. Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H., Son, C. W. and Lee, J. W. 2011. Statistical optimization for fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using an orthogonal array method. Biotechnol. Bioprocess. Eng. 16, 542-548. https://doi.org/10.1007/s12257-010-0457-5
  18. Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Statistical optimization for production of carboxymethylcellulase from rice hulls by a newly isolated marine microorganism Bacillus licheniformis LBH-52 using response surface method. J. Life Sci. 21, 1083-1093. https://doi.org/10.5352/JLS.2011.21.8.1083
  19. Krishna, C. 1999. Production of bacterial cellulases by a solid state bioprocessing of banana wastes. Bioresour. Technol. 69, 231-239. https://doi.org/10.1016/S0960-8524(98)00193-X
  20. Kumar, S., Tamura, K. and Nei, N. 1993. MEGA: Molecular evolutionary genetic analysis. Version 1.01, The Pennsylvania State University, University Park, USA.
  21. Latifian, M., Hamidi-Esfahani Z. and Barzegar, M. 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol. 98, 3634-3637. https://doi.org/10.1016/j.biortech.2006.11.019
  22. Lee, B. H., Kim, B. K., Lee, Y. J., Chung, C. H. and Lee, J. W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microbiol. Technol. 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
  23. Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Comparison of statistical methods for optimization of salts in medium for production of carboxymethylcellulase by Bacillus amyloliquefaciens DL-3 by a recombinant E. coli JM109/DL-3. J. Life Sci. 21, 1205-1213. https://doi.org/10.5352/JLS.2011.21.9.1205
  24. Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol. Bioprocess Eng. 17, 227-235. https://doi.org/10.1007/s12257-011-0258-5
  25. Lee, S. M. and Koo, Y. M. 2001. Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11, 229-233.
  26. Malinowska, E., Krzyczkowski, W., Lapienis, G. and Herold, F. 2009. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). J. Ind. Microbiol. Biotechnol. 36, 1513-1527. https://doi.org/10.1007/s10295-009-0640-x
  27. Mawadza, C., Hatti-Kaul, R., Zvauya, R. and Mattiasson, B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-87. https://doi.org/10.1016/S0168-1656(00)00305-9
  28. Roboson, L. M. and Chambliss, G. H. 1989. Celluases of bacterial origin. Enzyme Microb. Technol. 11, 626-644. https://doi.org/10.1016/0141-0229(89)90001-X
  29. Ryu, D. D. Y. and Mandels, M. 1980. Cellulase: biosynthesis and applications. Enzyme Microb. Technol. 2, 91-102. https://doi.org/10.1016/0141-0229(80)90063-0
  30. Saitous, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  31. Sukumaran, R. K., Singhania, R. R., Mathew, G. M. and Pandey, A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34, 421-424. https://doi.org/10.1016/j.renene.2008.05.008
  32. Tao, S., Beihui, L., Zuohu, L. and Deming, L. 1999. Effects of air pressure amplitude on cellulase productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Process Biochem. 34, 25-29. https://doi.org/10.1016/S0032-9592(98)00060-0
  33. Thompson, J. D., Higgins, D. G.. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  34. Tobias, H. J., Pitesky, M. E., Fergenson, D. P., Steele, P. T., Horn, J., Frank, M. and Gard, E. E. 2006. Following the biochemical and morphological changes of Bacillus atrophaeus cells during the sporulation process using bioaerosol mass spectrometry. J. Microbiol. Meth. 67, 56-63. https://doi.org/10.1016/j.mimet.2006.03.001
  35. Tomas-Pejo, E., Carcia-Aparicio, M., Negr, M. J., Oliva, J. M. and Ballesteros, M. 2009 Effect of different cellulase dosage on cell viability and ethanol production by Kluyveromeces marxianus in SSF process. Bioresour. Technol. 100, 890-895. https://doi.org/10.1016/j.biortech.2008.07.012
  36. Wei, G. Y., Gao, W., Jin, I. H., Yoo, S. Y., Lee, J. H., Chung, C. H. and Lee, J. W. 2009. Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14, 828-834. https://doi.org/10.1007/s12257-009-0029-8
  37. Weisburg, W. G., Barns, S. M., Pelletire, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173, 697-703.
  38. Yi, J. C., Sandra, J. C., John, A. B. and Shu, T. C. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and $\beta$-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65, 553-559.
  39. Yu, X. B., Nam, J. H., Yun, H. S. and Koo, Y. M. 1998. Optimization of cellulose production in batch fermentation by Trichoderma reesei. Biotechnol. Bioprocess Eng. 3, 44-47. https://doi.org/10.1007/BF02932483

피인용 문헌

  1. Enhanced production of carboxymethylcellulase of Bacillus subtilis subsp. subtilis A-53 by a recombinant Escherichia coli JM109/A-53 with pH and temperature shifts vol.32, pp.1, 2015, https://doi.org/10.1007/s11814-014-0160-x
  2. Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6
  3. A new alternative use for coffee pulp from semi-dry process to β-glucosidase production byBacillus subtilis vol.61, pp.6, 2015, https://doi.org/10.1111/lam.12498
  4. Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.542
  5. Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls vol.23, pp.6, 2013, https://doi.org/10.5352/JLS.2013.23.6.757
  6. Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3
  7. Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor vol.21, pp.5, 2016, https://doi.org/10.1007/s12257-016-0468-y
  8. Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1