Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.10.1295

Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry  

Kim, Yi-Joon (Department of Medical Bioscience, Graduate School of Donga-A University)
Cao, Wa (Department of Medical Bioscience, Graduate School of Donga-A University)
Lee, Yu-Jeong (Department of Medical Bioscience, Graduate School of Donga-A University)
Lee, Sang-Un (Department of Medical Bioscience, Graduate School of Donga-A University)
Jeong, Jeong-Han (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A Univeristy)
Lee, Jin-Woo (BK21 Bio-Silver Program of Dong-A University)
Publication Information
Journal of Life Science / v.22, no.10, 2012 , pp. 1295-1306 More about this Journal
Abstract
A microorganism producing carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus atrophaeus. This species was designated as B. atrophaeus LBH-18 based on its evolutionary distance and the phylogenetic tree resulting from 16S rDNA sequencing and the neighbor-joining method. The optimal conditions for rice bran (68.1 g/l), peptone (9.1 g/l), and initial pH (7.0) of the medium for cell growth was determined by Design Expert Software based on the response surface method; conditions for production of CMCase were 55.2 g/l, 6.6 g/l, and 7.1, respectively. The optimal temperature for cell growth and the production of CMCase by B. atrophaeus LBH-18 was $30^{\circ}C$. The optimal conditions of agitation speed and aeration rate for cell growth in a 7-l bioreactor were 324 rpm and 0.9 vvm, respectively, whereas those for production of CMCase were 343 rpm and 0.6 vvm, respectively. The optimal inner pressure for cell growth and production of CMCase in a 100-l bioreactor was 0.06 MPa. Maximal production of CMCase under optimal conditions in a 100-l bioreactor was 127.5 U/ml, which was 1.32 times higher than that without an inner pressure. In this study, rice bran was developed as a carbon source for industrial scale production of CMCase by B. atrophaeus LBH-18. Reduced time for the production of CMCase from 7 to 10 days to 3 days by using a bacterial strain with submerged fermentation also resulted in increased productivity of CMCase and a decrease in its production cost.
Keywords
Bacillus atrophaeus; carboxymethylcellulase; rice bran; response surface method;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Alam, M. Z., Muyibi, S. A. and Wahid, R. 2008. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresour. Technol. 99, 4709-4716.   DOI
2 Blumer-Schuette, S. E., Kataeva, I., Westpheling, J., Adams, M. W. W. and Kelly, R. M. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217.   DOI
3 Chen, M., Zhao, J. and Xia, L. 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71, 411-415.   DOI   ScienceOn
4 Domingues, F. C., Queiroz, J. A., Cabral, J. M. S. and Fonseca, L. P. 2000. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 26, 394-401.   DOI
5 Elibol, M. and Ozer, D. 2000. Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem. 36, 325-329.   DOI
6 Emtiazi, G. and Nahvi, I. 2000. Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37.   DOI
7 Feng, Y., He, Z., Ong, S. L., Hu, J., Zhang, Z. and Ng, W. J. 2003. Optimization of agitation, aeration, and temperature conditions for maximum $\beta$-mannanase production. Enzyme Microb. Technol. 32, 282-289.   DOI   ScienceOn
8 Gao, W., Kim, Y. J., Chung, C. H., Li, J. and Lee, J. W. 2010. Pilot-scale optimization of parameters related to dissolved oxygen for mass production of pullulan by Aureobasidium pullulans HP-2001. J. Life Sci. 20, 1433-1442.   DOI
9 Howard, R. L., Abotsi, E., Jansen von Rensburg, E. L. and Howard, S. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2, 602-619.
10 Jo, K. I., Lee, Y. J., Kim, B. K., Lee, B. H., Chung, C. H., Nam, S. W., Kim, S. K. and Lee, J. W. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188.   DOI
11 Jung, I. S., Kim, Y. J., Song, H. J., Gal, S. W. and Choi, Y. J. 2008. Purification and properties of a novel extracellular agarase from marine bacterium, Sphingomonas paucimobilis AS-1. J. Life Sci. 18, 103-108.   DOI
12 Kang, S., Park, W, Y. S., Lee, J. S., Hong, S. I. and Kim, S. W. 2004. Production of cellulase and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91, 153-156.   DOI
13 Khambhaty, Y., Mody, K. and Jha, B. 2007. Purification and characterization of $\kappa$-carrageenase from a novel $\gamma$ -proteobacterium, Pseudomonas elongate (MTCC 5261) syn. Microbulbifer elongates comb. Nov. Biotechnol. Bioproccess Eng. 12, 668-675.   DOI
14 Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H., Son, C. W. and Lee, J. W. 2011. Statistical optimization for fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using an orthogonal array method. Biotechnol. Bioprocess. Eng. 16, 542-548.   DOI
15 Kim, B. K., Lee, B. H., Y. J. Lee, Y. J., Jin, I. H., Chung, C. H. and Lee, J. W. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44, 411-416.   DOI
16 Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical method. Kor. J. Chem. Eng. 12, 384-391.
17 Kim, H. J., Gao, W., Lee, Y. J., Chung, C. H. and Lee, J. W. 2010. Characterization of acidic carboxymethylcellulase produced by a marine microorganism, Psychrobacter aquimaris LBH-10. J. Life Sci. 20, 487-495.   DOI
18 Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Statistical optimization for production of carboxymethylcellulase from rice hulls by a newly isolated marine microorganism Bacillus licheniformis LBH-52 using response surface method. J. Life Sci. 21, 1083-1093.   DOI
19 Krishna, C. 1999. Production of bacterial cellulases by a solid state bioprocessing of banana wastes. Bioresour. Technol. 69, 231-239.   DOI
20 Kumar, S., Tamura, K. and Nei, N. 1993. MEGA: Molecular evolutionary genetic analysis. Version 1.01, The Pennsylvania State University, University Park, USA.
21 Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol. Bioprocess Eng. 17, 227-235.   DOI
22 Latifian, M., Hamidi-Esfahani Z. and Barzegar, M. 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol. 98, 3634-3637.   DOI
23 Lee, B. H., Kim, B. K., Lee, Y. J., Chung, C. H. and Lee, J. W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microbiol. Technol. 46, 38-42.   DOI
24 Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Comparison of statistical methods for optimization of salts in medium for production of carboxymethylcellulase by Bacillus amyloliquefaciens DL-3 by a recombinant E. coli JM109/DL-3. J. Life Sci. 21, 1205-1213.   DOI
25 Lee, S. M. and Koo, Y. M. 2001. Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11, 229-233.
26 Malinowska, E., Krzyczkowski, W., Lapienis, G. and Herold, F. 2009. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). J. Ind. Microbiol. Biotechnol. 36, 1513-1527.   DOI
27 Mawadza, C., Hatti-Kaul, R., Zvauya, R. and Mattiasson, B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-87.   DOI   ScienceOn
28 Saitous, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
29 Roboson, L. M. and Chambliss, G. H. 1989. Celluases of bacterial origin. Enzyme Microb. Technol. 11, 626-644.   DOI
30 Ryu, D. D. Y. and Mandels, M. 1980. Cellulase: biosynthesis and applications. Enzyme Microb. Technol. 2, 91-102.   DOI
31 Sukumaran, R. K., Singhania, R. R., Mathew, G. M. and Pandey, A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34, 421-424.   DOI
32 Tao, S., Beihui, L., Zuohu, L. and Deming, L. 1999. Effects of air pressure amplitude on cellulase productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Process Biochem. 34, 25-29.   DOI
33 Thompson, J. D., Higgins, D. G.. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI   ScienceOn
34 Tobias, H. J., Pitesky, M. E., Fergenson, D. P., Steele, P. T., Horn, J., Frank, M. and Gard, E. E. 2006. Following the biochemical and morphological changes of Bacillus atrophaeus cells during the sporulation process using bioaerosol mass spectrometry. J. Microbiol. Meth. 67, 56-63.   DOI
35 Tomas-Pejo, E., Carcia-Aparicio, M., Negr, M. J., Oliva, J. M. and Ballesteros, M. 2009 Effect of different cellulase dosage on cell viability and ethanol production by Kluyveromeces marxianus in SSF process. Bioresour. Technol. 100, 890-895.   DOI
36 Yu, X. B., Nam, J. H., Yun, H. S. and Koo, Y. M. 1998. Optimization of cellulose production in batch fermentation by Trichoderma reesei. Biotechnol. Bioprocess Eng. 3, 44-47.   DOI
37 Wei, G. Y., Gao, W., Jin, I. H., Yoo, S. Y., Lee, J. H., Chung, C. H. and Lee, J. W. 2009. Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14, 828-834.   DOI
38 Weisburg, W. G., Barns, S. M., Pelletire, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173, 697-703.
39 Yi, J. C., Sandra, J. C., John, A. B. and Shu, T. C. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and $\beta$-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65, 553-559.