References
- Alam, M. Z., Muyibi, S. A. and Wahid, R. 2008. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresour. Technol. 99, 4709-4716. https://doi.org/10.1016/j.biortech.2007.09.072
- Blumer-Schuette, S. E., Kataeva, I., Westpheling, J., Adams, M. W. W. and Kelly, R. M. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
- Chen, M., Zhao, J. and Xia, L. 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71, 411-415. https://doi.org/10.1016/j.carbpol.2007.06.011
- Domingues, F. C., Queiroz, J. A., Cabral, J. M. S. and Fonseca, L. P. 2000. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 26, 394-401. https://doi.org/10.1016/S0141-0229(99)00166-0
- Elibol, M. and Ozer, D. 2000. Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem. 36, 325-329. https://doi.org/10.1016/S0032-9592(00)00226-0
- Emtiazi, G. and Nahvi, I. 2000. Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37. https://doi.org/10.1016/S0961-9534(00)00015-5
-
Feng, Y., He, Z., Ong, S. L., Hu, J., Zhang, Z. and Ng, W. J. 2003. Optimization of agitation, aeration, and temperature conditions for maximum
$\beta$ -mannanase production. Enzyme Microb. Technol. 32, 282-289. https://doi.org/10.1016/S0141-0229(02)00287-9 - Gao, W., Kim, Y. J., Chung, C. H., Li, J. and Lee, J. W. 2010. Pilot-scale optimization of parameters related to dissolved oxygen for mass production of pullulan by Aureobasidium pullulans HP-2001. J. Life Sci. 20, 1433-1442. https://doi.org/10.5352/JLS.2010.20.10.1433
- Howard, R. L., Abotsi, E., Jansen von Rensburg, E. L. and Howard, S. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2, 602-619.
- Jo, K. I., Lee, Y. J., Kim, B. K., Lee, B. H., Chung, C. H., Nam, S. W., Kim, S. K. and Lee, J. W. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
- Jung, I. S., Kim, Y. J., Song, H. J., Gal, S. W. and Choi, Y. J. 2008. Purification and properties of a novel extracellular agarase from marine bacterium, Sphingomonas paucimobilis AS-1. J. Life Sci. 18, 103-108. https://doi.org/10.5352/JLS.2008.18.1.103
- Kang, S., Park, W, Y. S., Lee, J. S., Hong, S. I. and Kim, S. W. 2004. Production of cellulase and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91, 153-156. https://doi.org/10.1016/S0960-8524(03)00172-X
-
Khambhaty, Y., Mody, K. and Jha, B. 2007. Purification and characterization of
$\kappa$ -carrageenase from a novel$\gamma$ -proteobacterium, Pseudomonas elongate (MTCC 5261) syn. Microbulbifer elongates comb. Nov. Biotechnol. Bioproccess Eng. 12, 668-675. https://doi.org/10.1007/BF02931084 - Kim, B. K., Lee, B. H., Y. J. Lee, Y. J., Jin, I. H., Chung, C. H. and Lee, J. W. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
- Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical method. Kor. J. Chem. Eng. 12, 384-391.
- Kim, H. J., Gao, W., Lee, Y. J., Chung, C. H. and Lee, J. W. 2010. Characterization of acidic carboxymethylcellulase produced by a marine microorganism, Psychrobacter aquimaris LBH-10. J. Life Sci. 20, 487-495. https://doi.org/10.5352/JLS.2010.20.4.487
- Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H., Son, C. W. and Lee, J. W. 2011. Statistical optimization for fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using an orthogonal array method. Biotechnol. Bioprocess. Eng. 16, 542-548. https://doi.org/10.1007/s12257-010-0457-5
- Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Statistical optimization for production of carboxymethylcellulase from rice hulls by a newly isolated marine microorganism Bacillus licheniformis LBH-52 using response surface method. J. Life Sci. 21, 1083-1093. https://doi.org/10.5352/JLS.2011.21.8.1083
- Krishna, C. 1999. Production of bacterial cellulases by a solid state bioprocessing of banana wastes. Bioresour. Technol. 69, 231-239. https://doi.org/10.1016/S0960-8524(98)00193-X
- Kumar, S., Tamura, K. and Nei, N. 1993. MEGA: Molecular evolutionary genetic analysis. Version 1.01, The Pennsylvania State University, University Park, USA.
- Latifian, M., Hamidi-Esfahani Z. and Barzegar, M. 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol. 98, 3634-3637. https://doi.org/10.1016/j.biortech.2006.11.019
- Lee, B. H., Kim, B. K., Lee, Y. J., Chung, C. H. and Lee, J. W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microbiol. Technol. 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
- Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Comparison of statistical methods for optimization of salts in medium for production of carboxymethylcellulase by Bacillus amyloliquefaciens DL-3 by a recombinant E. coli JM109/DL-3. J. Life Sci. 21, 1205-1213. https://doi.org/10.5352/JLS.2011.21.9.1205
- Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol. Bioprocess Eng. 17, 227-235. https://doi.org/10.1007/s12257-011-0258-5
- Lee, S. M. and Koo, Y. M. 2001. Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11, 229-233.
- Malinowska, E., Krzyczkowski, W., Lapienis, G. and Herold, F. 2009. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). J. Ind. Microbiol. Biotechnol. 36, 1513-1527. https://doi.org/10.1007/s10295-009-0640-x
- Mawadza, C., Hatti-Kaul, R., Zvauya, R. and Mattiasson, B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-87. https://doi.org/10.1016/S0168-1656(00)00305-9
- Roboson, L. M. and Chambliss, G. H. 1989. Celluases of bacterial origin. Enzyme Microb. Technol. 11, 626-644. https://doi.org/10.1016/0141-0229(89)90001-X
- Ryu, D. D. Y. and Mandels, M. 1980. Cellulase: biosynthesis and applications. Enzyme Microb. Technol. 2, 91-102. https://doi.org/10.1016/0141-0229(80)90063-0
- Saitous, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
- Sukumaran, R. K., Singhania, R. R., Mathew, G. M. and Pandey, A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34, 421-424. https://doi.org/10.1016/j.renene.2008.05.008
- Tao, S., Beihui, L., Zuohu, L. and Deming, L. 1999. Effects of air pressure amplitude on cellulase productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Process Biochem. 34, 25-29. https://doi.org/10.1016/S0032-9592(98)00060-0
- Thompson, J. D., Higgins, D. G.. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Tobias, H. J., Pitesky, M. E., Fergenson, D. P., Steele, P. T., Horn, J., Frank, M. and Gard, E. E. 2006. Following the biochemical and morphological changes of Bacillus atrophaeus cells during the sporulation process using bioaerosol mass spectrometry. J. Microbiol. Meth. 67, 56-63. https://doi.org/10.1016/j.mimet.2006.03.001
- Tomas-Pejo, E., Carcia-Aparicio, M., Negr, M. J., Oliva, J. M. and Ballesteros, M. 2009 Effect of different cellulase dosage on cell viability and ethanol production by Kluyveromeces marxianus in SSF process. Bioresour. Technol. 100, 890-895. https://doi.org/10.1016/j.biortech.2008.07.012
- Wei, G. Y., Gao, W., Jin, I. H., Yoo, S. Y., Lee, J. H., Chung, C. H. and Lee, J. W. 2009. Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14, 828-834. https://doi.org/10.1007/s12257-009-0029-8
- Weisburg, W. G., Barns, S. M., Pelletire, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173, 697-703.
-
Yi, J. C., Sandra, J. C., John, A. B. and Shu, T. C. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and
$\beta$ -glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65, 553-559. - Yu, X. B., Nam, J. H., Yun, H. S. and Koo, Y. M. 1998. Optimization of cellulose production in batch fermentation by Trichoderma reesei. Biotechnol. Bioprocess Eng. 3, 44-47. https://doi.org/10.1007/BF02932483
Cited by
- Enhanced production of carboxymethylcellulase of Bacillus subtilis subsp. subtilis A-53 by a recombinant Escherichia coli JM109/A-53 with pH and temperature shifts vol.32, pp.1, 2015, https://doi.org/10.1007/s11814-014-0160-x
- Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6
- A new alternative use for coffee pulp from semi-dry process to β-glucosidase production byBacillus subtilis vol.61, pp.6, 2015, https://doi.org/10.1111/lam.12498
- Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.542
- Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls vol.23, pp.6, 2013, https://doi.org/10.5352/JLS.2013.23.6.757
- Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3
- Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor vol.21, pp.5, 2016, https://doi.org/10.1007/s12257-016-0468-y
- Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1