References
- Ait-Sahalia, Y. and Lo, A. W. (2000). Nonparametric risk management and implied risk aversion, Journal of Econometrics, 94, 9-51. https://doi.org/10.1016/S0304-4076(99)00016-0
- Bahra, B. (1997). Implied riskneutral probability density functions from option prices: Theory and application, Working paper, Bank of England.
- Bali, T. G. (2007). An extreme value approach to estimating interest-rate volatility: Pricing implications for interest-rate options, Management Science, 53, 323-339. https://doi.org/10.1287/mnsc.1060.0628
- Berkowitz, J. (2001). Testing density forecasts, with applications to risk management, Journal of Business and Economic Statistics, 19, 465-474. https://doi.org/10.1198/07350010152596718
- Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637-659. https://doi.org/10.1086/260062
- Christoffersen, P. (1998). Evaluating interval forecasts, International Economic Review, 39, 841-862. https://doi.org/10.2307/2527341
- Fabozzi, F. J., Tunaru, R. and Albota, G. (2009). Estimating risk-neutral density with parametric models in interest rate markets, Quantitative Finance, 9, 55-70. https://doi.org/10.1080/14697680802272045
- Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance, 48, 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
- Grith, M. and Kratschmer, V. (2010). Parametric estimation of risk neutral density functions, SFB 649, Discussion Paper
- Harrison, J. M. and Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes Applications, 11, 215-260. https://doi.org/10.1016/0304-4149(81)90026-0
- Kim, M. S. and Kang, T. H. (2010). Value at risk using generalized extreme value distribution implied in the KOSPI 200 index options, Asian Review of Financial Research, 23, 367-404.
- Markose, S. and Alentorn, A. (2010). The Generalized extreme value(GEV) distribution, implied tail index and option pricing, Forthcoming Spring 2011 in The Journal of Derivatives.
- Ritchey, R. J. (1990). Call option valuation for discrete normal mixtures, Journal of Financial Research, 13, 285-296. https://doi.org/10.1111/j.1475-6803.1990.tb00633.x
- Rosenblatt, M. (1952). Remarks on a multivariate transformation, The Annals of Mathematical Statistics, 23, 470-472. https://doi.org/10.1214/aoms/1177729394
- Savickas, R. (2002). A simple option-pricing formula, The Financial Review, 37, 207-226. https://doi.org/10.1111/1540-6288.00012
Cited by
- Vector at Risk and alternative Value at Risk vol.29, pp.4, 2016, https://doi.org/10.5351/KJAS.2016.29.4.689
- Properties of alternative VaR for multivariate normal distributions vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1453