DOI QR코드

DOI QR Code

염기도가 알칼리 활성고로슬래그 모르타르의 탄산화에 미치는 영향

Effects of Basicity on the Carbonation Characteristics of Alkali-Activated Slag Mortar

  • 투고 : 2012.05.11
  • 심사 : 2012.07.27
  • 발행 : 2012.10.31

초록

알칼리 활성슬래그(AAS)는 $CO_2$ 배출 부하가 큰 보통포틀랜드시멘트(OPC)의 가장 확실한 대체 재료로써 구조재로 이용하기 위해서는 내구성 평가 및 검증이 필요하다. 내구성 평가지표의 큰 비중을 차지하고 있는 것이 탄산화저항성인데, 알칼리 활성슬래그는 낮은 칼슘 함유량 때문에 OPC보다 탄산화 저항성이 약한 것으로 알려져 있다. 이 연구에서는 알칼리 활성슬래그의 모재료인 고로슬래그의 염기도(CaO/$SiO_2$)를 메카노-케미컬 합성법에 의해 조정하고, 조정된 염기도에 따라 수화생성물의 구성변화와 탄산화 전 후의 물리적 특성이 어떻게 변하는지 살펴보았다. 실험 결과 염기도가 높을수록 강도 증가와 탄산화 저항성이 향상되고, 탄산화 후 강도 저하가 개선되었다.

Carbonation resistance is one of the most influencing factors on durability of concrete. Alkali activated slag (AAS) is known to have weaker resistance for carbonation than OPC due to the low calcium contents. In this paper, the carbonation characteristic of AAS mortar which is related to the basicity (CaO/$SiO_2$) was investigated. In order to give the various basicity conditions, SM (source material) was blended with quicklime (CaO) and silicon dioxide ($SiO_2$) by adopting mechano-chemical treatment method. Experiments including flow test, compressive strength test, carbonation depth test, together with XRD, FTIR and TGA were employed to evaluate the effects of basicity of SM on the carbonation characteristics. The test results showed that the carbonation resistance effectively increased with the increase of the basicity of SM.

키워드

참고문헌

  1. Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., and Gartner, E. M., "Sustainable Development and Climate Change Initiatives," Cement and Concrete Research, Vol. 38, No. 2, 2008, pp. 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008
  2. Malhotra, V. M., "Introduction: Sustainable Developmentand Concrete Technology," Concrete International, Vol. 24, No. 7, 2001, 22 pp.
  3. Pacheco-Torgal, F., Castro-Gomes, J., and Jalai, S., "Alkali- Activated Binders: a Review, Part 2. about Materials and Binder Manufacture," Construction and Building Materials, Vol. 22, No. 7, 2008, pp. 1315-1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019
  4. Palomo, A., Grutzeck, M. W., and Blanco, M. T., "Alkali Activated Fly Ashes: A Cement for the Future," Cement and Concrete Research, Vol. 29, No. 8, 1999, pp. 1323- 1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  5. Roy, D, M., "Alkali-Activated Cements : Opportunities and Challenges," Cement and Concrete Research, Vol. 29, No. 2, 1999, pp. 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3
  6. Korea Cement Association, 2010 Cement of Statistical Annual Report in Korea, Korea, 2011. 13 pp.
  7. Krivenko, P. V., "Alkaline Cements," First International Conference on Alkaline Cements and Concrete, Kiev, Ukraine, 1994, pp. 11-130.
  8. Byfors, K., Klingstedt, G., Lehtonen, V., Pyy, H. and Romben, L., "Durability of Concrete Made with Alkali-Activated Slag," Third International Conference on the Use of Natural Pozzolans, Flay Ash, Blast Furnace Slag and Silica Fume in Concrete, ACI SP-114, 1989, pp. 1429-1466.
  9. Song, K. I., Song, J. K., Yang, K. H., and Lee, B. Y., "Carbonation Characteristics of Alkali Activated Blast-furnace Slag Mortar," Journal of the Korea Concrete Institute, Vol. 24, No. 3, 2012, pp. 315-322. https://doi.org/10.4334/JKCI.2012.24.3.315
  10. Shi, C., Krivenko, P. V., and Roy, D., Alkali-Activated Cements and Concretes, Taylor and Francis, UK, 2006, pp. 6-29.
  11. Saito, F., Mi, G., and Hanada, M., "Mechanochemical Synthesis of Hydrated Calcium Silicates by Room Temperature Grinding," Solid State Ionics, Vol. 101-103, 1997, pp. 37-43. https://doi.org/10.1016/S0167-2738(97)00278-6
  12. Chang, C. and Chen, J., "The Experimental Investigation of Concrete Carbonation Depth," Cement and Concrete Research, Vol. 36, No. 9, 2006, pp. 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
  13. Puertas, F., Palacios, M., and Vazquez, T., "Carbonation Process of Alkali-Activated Slag Mortars," Journal of Materials Science, Vol. 41, No. 10, 2006, pp. 3071-3082. https://doi.org/10.1007/s10853-005-1821-2
  14. Bernal, S. A., Gutierrez, R. M., Provis, J. L., and Rose, V., "Effect of Silicate Modulus and Metakaolin Incorporation on the Carbonation of Alkali Silicate-Activated Slags," Cement and Concrete Research, Vol. 40, No. 6, 2010, pp. 898-907. https://doi.org/10.1016/j.cemconres.2010.02.003
  15. Peng, G.-F. and Peng, Z.-S., "Change in Microstructure of Hardened Cement Paste Subjected to Elevated Temperatures," Construction and Building Materials, Vol. 22, No. 4, 2008, pp. 593-599. https://doi.org/10.1016/j.conbuildmat.2006.11.002

피인용 문헌

  1. Fundamental Characteristics of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar vol.15, pp.2, 2013, https://doi.org/10.7855/IJHE.2013.15.2.095
  2. Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar vol.25, pp.3, 2013, https://doi.org/10.4334/JKCI.2013.25.3.305
  3. The Fundamental Study of Strength and Drying Shrinkage on Alkali-activated Slag Cement Mortar with Different Entering Point of Fine Aggregate vol.18, pp.2, 2014, https://doi.org/10.11112/jksmi.2014.18.2.117
  4. Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete vol.27, pp.3, 2015, https://doi.org/10.4334/JKCI.2015.27.3.311