DOI QR코드

DOI QR Code

사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구

Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask

  • 구준성 (한밭대학교 기계설계공학전공 대학원) ;
  • 신광복 (한밭대학교 기계공학과) ;
  • 최우석 (한국원자력연구원)
  • Goo, Jun-Sung (Graduate school of Mechanical Design Engineering, Hanbat Nat'l Univ.) ;
  • Shin, Kwang-Bok (Dept. of Mechanical Engineering, Hanbat Nat'l Univ.) ;
  • Choi, Woo-Suk (Korea Atomic Energy Research Institute)
  • 투고 : 2012.06.04
  • 심사 : 2012.07.31
  • 발행 : 2012.11.01

초록

본 논문의 목적은 사용후핵연료 수송용기 충격완충체의 완충재질로 고려되고 있는 발사목과 우레탄 폼 심재, 그리고 샌드위치 패널에 대한 저속충격거동 및 기계적 특성을 평가하는 것이다. 우레탄 폼은 등방성 재질로써 인장, 압축, 그리고 전단의 기본물성시험을 수행하였으며, 발사목은 서로 다른 직교방향에서 다른 물성을 갖는 이방성 재료이므로 아홉가지 방향에 대한 기계적 특성 평가를 하였다. 충격시험용 심재와 샌드위치 패널 시험편은 충격시험기를 사용하여 세가지 충격에너지 레벨(1J, 3J, 그리고 5J)에 대한 저속충격시험을 수행하였다. 시험 결과, 우레탄 폼과 성장방향을 제외한 발사목은 충격에너지 흡수율, 접촉하중, 그리고 손상영역에서 유사한 거동을 보였으며, 우레탄 폼 심재는 난연성과 비용절약이 우선시 되는 설계에서 완충재질로서 추천될 수 있고, 발사목 심재는 사용후핵연료 수송용기의 경량화를 위한 완충재질로써 우선 고려될 수 있다.

This paper aims to evaluate the low-velocity impact responses and mechanical properties of balsa-wood and urethane-foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane-foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa-wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low-velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5 J. The experimental results showed that both the urethane-foam and the balsa-wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane-foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa-wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.

키워드

참고문헌

  1. Ku, J. H., Seo, K. S., Kang, H. Y. and Kim, Y. J., 1995, "A FEM Analysis of the Dynamic Behavior of Spent Nuclear Fuel Transport Cask Under Oblique Drop Impact," Trans. of the KSME A, Vol. 19, No. 12, pp. 3252-3259.
  2. Chung, S. H., Ku, J. H., Kang, H. Y. and Lee, Y. S., 1994, "Study of Side Drop Impact for Cask," Autumn Conference of Korean Society of Mechanical Engineers, pp. 441-445.
  3. Lee, Y. S. and Kim, Y. J., 1994, "A Study on the Dynamic Behaviors of a Shipping Container Under Drop Impact Loading," Trans. of the KSME, Vol. 18, No. 11, pp. 2805-2816.
  4. Ku, J. H., Seo, K. S., Min, D. K. and Kim Y. J., 1998, "Effect of the Weldement Failure of Cask Impact Limiter on the Impact Absorbing Behavior," Trans. of the KSME(A), Vol. 22, No. 12, pp. 2286-2295.
  5. Kim, K. S., Kim, J. S., Choi, K. S., Shin, T. M., et al., 2010, "Dynamic Impact Characteristics of KN-18 SNF Transport Cask. Part 2: Sensitivity Analysis of Modeling and Design Parameters," Annals of Nuclear Energy, Vol. 37, No. 4, pp. 560-571. https://doi.org/10.1016/j.anucene.2009.12.024
  6. Aquaro, D., Zaccari, N., Di Prinzio, M. and Forasassi, G., 2010, "Numerical and Experimental Analysis of the Impact of a Nuclear Spent Fuel Cask," Nuclear Engineering and Design, Vol. 240, No. 4, pp. 706-712. https://doi.org/10.1016/j.nucengdes.2009.12.018
  7. Ku, J. H., Seo, K. S., Park, S. W. and Kim, Y. J., 2000, "Beneficial Influence of the Weldment Rupture of Cask Impact Limiter Case on the Impact Absorbing Behavior," Nuclear Engineering and Design, Vol. 196, No. 3, pp. 263-279. https://doi.org/10.1016/S0029-5493(99)00305-2
  8. Kim, K. S., Kim, J. S., Choi, K. S., Shin, T. M., et al., 2010, "Dynamic Impact Characteristics of KN-18 SNF Transport Cask. Part 1: An Advanced Numerical Simulation and Validation Technique," Annals of Nuclear Energy, Vol. 37, No. 4, pp. 546-559. https://doi.org/10.1016/j.anucene.2009.12.023
  9. ASTM D3574, 2003, Standard Test Methods for Flexible Cellular Materials-Slab, Bonded, and Molded Urethane Foams.
  10. ASTM D1623, 2003, Standard Test Method for Tensile and Tensile Adhesion Properties of Rigid Cellular Plastics.
  11. ASTM D365, 2003, Standard Test Method for Flatwise Compressive Properties of Sandwich Cores.
  12. ASTM D273, 2000, Standard Test Method for Shear Properties of Sandwich Core Materials.
  13. Jeon, K. W., Shin, K. B., Ko, H. Y., Kim, D. H., 2009, "A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles," Trans. of the KSME(A), Vol. 33, No. 1, pp. 64-71.
  14. Shin, K. B., Lee, J. Y., Lee, S. J., 2007, "A Study on Low-Velocity Impact Characterization of Various Sandwich Panels for the Korean Low Floor Bus Application," Trans. of the KSME(A), Vol. 31, No. 4, pp. 506-516.

피인용 문헌

  1. Effective Equivalent Finite Element Model for Impact Limiter of Nuclear Spent Fuel Shipping Cask made of Sandwich Composites Panels vol.28, pp.2, 2015, https://doi.org/10.7234/composres.2015.28.2.058