DOI QR코드

DOI QR Code

Conformance-Based Dynamic Performance Optimization of an Actuator

순응도 기반의 구동기 동적 성능 최적화

  • Son, Young-Kap (Dept. of Mechanical & Automotive Engineering, Andong Nat'l Univ.)
  • 손영갑 (안동대학교 기계자동차공학과)
  • Received : 2012.05.17
  • Accepted : 2012.06.29
  • Published : 2012.11.01

Abstract

This study shows the conformance-based design results of a fourth-order dynamic actuator showing a performance variation caused by variation in the components as well as aero-induced disturbances. The actuator comprises a BLDC motor, spur gear and worm gear assembly, and canard. The actuator performance was evaluated by using time-variant angle information of the canard. Based on the response surface models, critical system variables were screened using F-tests, and then, the performance was approximated as a function of the variables because it is difficult to determine the performance of a high-order dynamic system as a function of system variables through analytical approaches. In this study, the conformance of uncertain performance to the specification was defined as a probability measure. The design variables obtained by optimizing the measure can provide actuator performance conforming to the specifications considered, even though there is a variation in both the components and the aero-induced disturbances.

본 논문은 4차 동적 시스템인 구동기를 구성하는 부품들의 변량 및 공기외란의 변량으로 인해 구동기 성능에 변량이 존재할 때, 구동기의 성능을 순응도 기반으로 최적화한 설계 결과를 제시하였다. 구동기는 BLDC 모터와 평기어 및 웜기어 조립체, 카나드로 구성된다. 구동기의 성능은 시간에 따라 변화하는 카나드 각도 정보를 이용하여 평가하였다. 고차 시스템의 성능은 해석적 접근을 통해 시스템 변수들의 함수로 표현하기 어렵기 때문에 반응표면모델을 기반으로, F-검정을 수행하여 유효한 시스템 변수들을 선정한 후 성능을 유효한 시스템 변수들의 함수로 근사화하였다. 본 연구에서 변량을 가지는 구동기 성능의 규격에 대한 순응도를 확률값으로 정의하였다. 순응도를 최적화하여 구한 설계변수는 부품 및 공기외란에 변량이 존재하더라도 고려한 규격을 모두 만족시킬 수 구동기를 제공할 수 있다.

Keywords

References

  1. Safie and Weldon (NASA/MSFC) 2009, "Use of Probabilistic Engineering Methods in the Detailed Design and Development Phase of the NASA Ares Launch Vehicle," MSFC-2039.
  2. Lu, X., Li, H.-X., 2011, "Robust Design for Dynamic Systems Under Model Uncertainty," ASME Journal of Mechanical Design, 133, pp. 021006 1-7.
  3. Savage, G. J. and Son, Y. K., 2008, "Design-for-Six-Sigma for Multiple Response Systems," International Journal of Product Development, 5(1/2), pp. 39-53. https://doi.org/10.1504/IJPD.2008.016369
  4. Ryu, J.-H., Choi, I.-S., Kim, J.-S., and Son, Y. K., 2011, "Robust Design of a Dynamic System Using a Probabilistic Design Method," Transactions of the Korean Society of Mechanical Engineers A, Vol. 35 (10), pp. 1171-1178. https://doi.org/10.3795/KSME-A.2011.35.10.1171
  5. Craig, K. J., Stander, N., Dooge, D. A., and Varadappa, S., 2005, "Automotive Crashworthiness Design Using Response Surface-Based Variable Screening and Optimization," International Journal for Computer-Aided Engineering and Software, 22(1), pp. 38-61. https://doi.org/10.1108/02644400510572406
  6. Pillay, P. and Krishnan, R., 1989, "Modeling, Simulation, and Analysis of Permanent-Magnet Motor Drives, Part II: The Brushless DC Motor Drive," IEEE Transactions on Industry Applications, Vol. 25, No. 2.
  7. Weinacht, P., 2007, "Coupled CFD/CN&C Modeling for a Smart Material Canard Actuator," Army Research Laboratory.
  8. Yeh, T.-J. and Wu, F.-K., 2009, "Modeling and Robust Control of Worm-Gear Driven Systems," Simulation Modelling Practice and Theory, Vol. 17(5), pp. 767-777. https://doi.org/10.1016/j.simpat.2009.01.002
  9. Hines, W. and Montgomery, D. C., 1990, Probability and Statistics in Engineering and Management Science, Wiley.
  10. Son, Y. K. 2011, "Reliability Prediction of Engineering Systems with Competing Failure Modes due to Component Degradation," Journal of Mechanical Science and Technology, Vol.25 (7), pp. 1717-1725. https://doi.org/10.1007/s12206-011-0415-y