몬테칼로 전산모사를 이용한 셋업오차가 임상표적체적에 전달되는 선량과 셋업마진에 대하여 미치는 영향 평가

Evaluation of Setup Uncertainty on the CTV Dose and Setup Margin Using Monte Carlo Simulation

  • 조일성 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 곽정원 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 조병철 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 김종훈 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 안승도 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 박성호 (울산대학교 의과대학 서울아산병원 방사선종양학교실)
  • Cho, Il-Sung (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kwark, Jung-Won (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Cho, Byung-Chul (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jong-Hoon (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ahn, Seung-Do (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Park, Sung-Ho (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2012.03.05
  • 심사 : 2012.04.04
  • 발행 : 2012.06.30

초록

방사선 치료에서 부정확한 환자 셋업이 표적에 전달되는 선량에 미치는 영향과 치료 마진과의 연관성을 몬테칼로 기법을 사용한 전산모사를 통하여 분석하였다. 실제 방사선 치료를 받은 직장암 환자에 대한 임상표적체적(CTV: Clinical Target Volume) 및 주요장기의 구조와 치료계획 시스템(Eclipse 8.9, USA)을 이용하여 수립된 세기조절 방사선치료계획에서의 선량분포에 대한 데이터를 전산모사에서 사용하였다. 전산모사 프로그램은 리눅스환경에서 오픈소스인 ROOT 라이브러리와 GCC를 기반으로 본 연구를 위하여 개발되었다. 환자셋업오차의 확률분포를 정규분포로 가정한 것에 따라 무작위로 생성된 크기만큼 셋업이 부정확한 경우를 모사하여 임상표적체적에서의 선량분포의 변화와 오차크기에 따른 마진크기를 3차원입체조형 방사선치료에 사용되는 마진공식과 비교분석 하였다. 셋업오차 생성에 사용된 정규분포의 표준편차 크기는 1 mm부터 10 mm까지 1 mm간격으로 두었으며 계통오차와 통계오차별로 2,000번 전산모사했다. 계통오차의 경우 전산모사에 사용된 표준편차가 커질수록 임상표적체적에 조사되는 최소선량 $D_{min}^{stat{\cdot}}$은 100.4%에서 72.50%로 감소하였고 평균선량 $\bar{D}_{syst{\cdot}}$도 100.45%에서 97.88%로 감소한 반면에 표준편차${\Delta}D_{sys}$는 0.02%에서 3.33%로 증가하였다. 통계오차의 경우 최소선량 $D_{min}^{rand{\cdot}}$은 100.45%에서 94.80%감소하였고 평균선량 $\bar{D}_{syst{\cdot}}$도 100.46%에서 97.87%로 감소하였으며 표준편차 ${\Delta}D_{rand}$는 0.01%에서 0.63%로 증가하였다. 그리고 마진공식으로부터 전산모사에 사용된 셋업오차에 해당되는 마진크기를 구하고 모집단비율(population ratio)을 정의하여 기존 마진공식의 목적이 세기조절방사선치료에 만족함을 확인했다. 개발된 전산모사 프로그램은 해당 환자의 치료계획 정보를 직접 사용하므로 직장암만 아니라 두경부암, 전립선암 등 여러 환부에 적용 가능하며 셋업오차 및 선량변화에 연관된 연구에도 사용할 수 있을 것으로 사료된다.

The effect of setup uncertainties on CTV dose and the correlation between setup uncertainties and setup margin were evaluated by Monte Carlo based numerical simulation. Patient specific information of IMRT treatment plan for rectal cancer designed on the VARIAN Eclipse planning system was utilized for the Monte Carlo simulation program including the planned dose distribution and tumor volume information of a rectal cancer patient. The simulation program was developed for the purpose of the study on Linux environment using open source packages, GNU C++ and ROOT data analysis framework. All misalignments of patient setup were assumed to follow the central limit theorem. Thus systematic and random errors were generated according to the gaussian statistics with a given standard deviation as simulation input parameter. After the setup error simulations, the change of dose in CTV volume was analyzed with the simulation result. In order to verify the conventional margin recipe, the correlation between setup error and setup margin was compared with the margin formula developed on three dimensional conformal radiation therapy. The simulation was performed total 2,000 times for each simulation input of systematic and random errors independently. The size of standard deviation for generating patient setup errors was changed from 1 mm to 10 mm with 1 mm step. In case for the systematic error the minimum dose on CTV $D_{min}^{stat{\cdot}}$ was decreased from 100.4 to 72.50% and the mean dose $\bar{D}_{syst{\cdot}}$ was decreased from 100.45% to 97.88%. However the standard deviation of dose distribution in CTV volume was increased from 0.02% to 3.33%. The effect of random error gave the same result of a reduction of mean and minimum dose to CTV volume. It was found that the minimum dose on CTV volume $D_{min}^{rand{\cdot}}$ was reduced from 100.45% to 94.80% and the mean dose to CTV $\bar{D}_{rand{\cdot}}$ was decreased from 100.46% to 97.87%. Like systematic error, the standard deviation of CTV dose ${\Delta}D_{rand}$ was increased from 0.01% to 0.63%. After calculating a size of margin for each systematic and random error the "population ratio" was introduced and applied to verify margin recipe. It was found that the conventional margin formula satisfy margin object on IMRT treatment for rectal cancer. It is considered that the developed Monte-carlo based simulation program might be useful to study for patient setup error and dose coverage in CTV volume due to variations of margin size and setup error.

키워드

참고문헌

  1. Bijhold J, Lebesque JV, Hart AA, et al: Maximizing setup accuracy using portal images as applied to a conformal boost technique for prostatic cancer. Radiother Oncol 24:261-271 (1992) https://doi.org/10.1016/0167-8140(92)90233-K
  2. Bel A, van Herk M, Bartelink H, et al: A verification procedure to improve patient set-up accuracy using portal images, Radiother Oncol 29(2):253-260 (1993) https://doi.org/10.1016/0167-8140(93)90255-7
  3. de Boer HC, Heijmen BJ: A protocol for the reduction of systematic patient setup errors with minimal portal imaging workload. Int J Radiat Oncol Biol Phys 50(5):1350-1365 (2001) https://doi.org/10.1016/S0360-3016(01)01624-8
  4. Van Herk M: Errors and Margins in Radiotherapy. Seminars in Radiation Oncol 14(1):52-64 (2004)
  5. Mageras GS, Kutcher GJ, Leibel SA, et al: A method of incorporating organ motion uncertainties into three-dimensional conformal treatment plans. Int J Radiat Oncol Biol Phys 35(2): 333-342 (1996) https://doi.org/10.1016/0360-3016(96)00008-9
  6. Killoran JH, Kooy HM, Gladstone DJ, et al: A numerical simulation of organ motion and daily setup uncertainties: implications for radiation therapy. Int J Radiat Oncol Biol Phys 37(1):213-221 (1997) https://doi.org/10.1016/S0360-3016(96)00477-4
  7. Mageras GS, Fuks Z, Leibel SA, et al: Computerized design of target margins for treatment uncertainties in conformal radiotherapy. Int J Radiat Oncol Biol Phys 43(2):437-445 (1999) https://doi.org/10.1016/S0360-3016(98)00386-1
  8. Chen AM, Farwell DG, Luu Q, et al: Evaluation of the planning target volume in the treatment of head and neck cancer with intensity-modulated radiotherapy: what is the appropriate expansion margin in the setting of daily image guidance? Int J Radiat Oncol Biol Phys 81(4):943-949 (2011) https://doi.org/10.1016/j.ijrobp.2010.07.017
  9. Huang E, Dong L, Chandra A, et al: Intrafraction prostate motion during IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 53:261-268 (2002) https://doi.org/10.1016/S0360-3016(02)02738-4
  10. Britton KR, Takai Y, Mitsuya M, et al: Evaluation of internd intrafraction organ motion during intensity modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med 23(1):14-24 (2005)
  11. Samuelian JM, Callister MD, Ashman JB, et al: Reduced acute bowel toxicity in patients treated with intensitymodulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 82(5):1981-1987 (2012) https://doi.org/10.1016/j.ijrobp.2011.01.051
  12. Duthoy W, De Gersem W, Vergote K, et al: Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 60(3):794-806 (2004) https://doi.org/10.1016/j.ijrobp.2004.04.016
  13. Guerrero Urbano MT, Henrys AJ, Adams EJ, et al: Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys 65(3):907-916 (2006) https://doi.org/10.1016/j.ijrobp.2005.12.056
  14. RTOG 0529: A Phase II Evaluation of Dose-Painted IMRT in Combination with 5-Fluorouracil and Mitomycin-C for Reduction of Acute Morbidity in Carcinoma of the Anal Canal
  15. ROOT: An Object Oriented Data Analysis Framework, http://root.cern.ch
  16. Matsumoto M, Nishimura T: Mersenne Twistor: A 623-diminsionally equidistributed uniform pseudorandom number generator, ACM Trans. Model Comput Simul 8:3-30 (1998) https://doi.org/10.1145/272991.272995
  17. Van Herk M, Remeijer P, Rasch C, et al: The Probability of correct target dosage: Dose-Population histograms for deriving treatment margins in radiotherapy. Int J Radiation Oncology Biol Phys 47:1121-1135 (2000) https://doi.org/10.1016/S0360-3016(00)00518-6
  18. Jin JY, Yin FF, Tenn SE, et al: Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy. Med Dosim 33:124-134 (2008) https://doi.org/10.1016/j.meddos.2008.02.005