중합체 겔 선량측정법을 위한 최적의 자기공명영상 변수에 관한 연구

A Study of Optimized MRI Parameters for Polymer Gel Dosimetry

  • 조삼주 (을지대학교 보건과학대학 방사선학과) ;
  • 정영립 (경기대학교 의학물리학과) ;
  • 이상훈 (관동대학교 의과대학 제일병원 방사선종양학교실) ;
  • 허현도 (인하대학교병원 방사선종양학교실) ;
  • 최진호 (가천대학교 길병원 방사선종양학과) ;
  • 박성일 (경기대학교 의학물리학과) ;
  • 심수정 (을지대학교 의과대학 방사선종양학교실) ;
  • 권수일 (경기대학교 의학물리학과)
  • Cho, Sam-Ju (Department of Radiological Science, Eulji University) ;
  • Chung, Young-Lip (Department of Medical Physics, Kyonggi University) ;
  • Lee, Sang-Hoon (Department of Radiation Oncology, Cheil General Hospital & Women's Healthcare Center, Kwandong University College of Medicine) ;
  • Huh, Hyun-Do (Department of Radiation Oncology, Inha University Hospital) ;
  • Choi, Jin-Ho (Department of Radiation Oncology, Gachon University Gil Hospital) ;
  • Park, Sung-Ill (Department of Medical Physics, Kyonggi University) ;
  • Shim, Su-Jung (Department of Radiation Oncology, College of Medicine, Eulji University) ;
  • Kwon, Soo-Il (Department of Medical Physics, Kyonggi University)
  • 투고 : 2012.06.08
  • 심사 : 2012.06.13
  • 발행 : 2012.06.30

초록

최신 방사선 치료 및 수술 기법에는 복잡한 3차원적 선량분포를 정확히 측정하는 실용적 선량분석 기기 및 기술이 필요하다. 본 연구에서는 실험실에서 제작한 겔을 방사선 치료 영역에서 선량계로 활용하기 위해 최적화된 자기공명영상 변수 조건에 대해 연구하였다. 이를 위해 각 자기공명영상 획득 조건에서 TE 시간 TR 시간, 영상 두께, 코일 등을 달리하여 조건 별로 획득한 영상을 이용하여 비교 평가하였고, 선량불확도 및 선량 분해능을 도입하여 본 연구에서 찾은 조건에 대해 평가하였다. 8% 젤라틴(300 bloom, Sigma-Aldrich, USA), 8% MAA (Metaacrylic acid, Sigma-Aldrich, USA), 10 mM THPC (tetrakis hydroxymethyl phosphonium, Sigma-Aldrich, USA), 그리고 0.05 mM HQ (Hydroquinone, Sigma-Aldrich, USA) 농도의 조성비를 가진 정상산소 중합체 겔을 실험실에서 합성하였다. 방사선 선량 전달은 Co-60 감마선 조사기 (Theratron-780; AECL, Ottawa, Canada)를 사용하였고 고체 팬텀을 사용하여 중합체 겔에 각각 0, 2, 4, 6, 8, 10, 12, 14 Gy의 선량을 전달하였다. 자기공명영상 장치의 특성상 T2 시간을 얻기 위해서는 fast spin echo 파형을 사용하였다. 일반적으로 Head Coil이 SNR이 Body coil 보다 낮아 선량 불확도가 우수할 것으로 예측하였으나, 일부 문헌에서는 Body coil이 영상 균일도가 우수하다고 하였다. 하지만 본 연구에서는 Head coil이 선량 불확도 및 선량 분해능이 모든 선량 영역에서 Body coil 보다 우수한 것을 확인하였다. TR 시간 연구에서 TR 1,500 ms와 TR 2,000 ms 간의 차이는 선량분해능에서 모두 큰 차이가 없으나 TR 1,500 ms가 조금 낮은 선량 불확도 값을 갖는 것을 보았다. MR 영상 두께가 2.5 mm일 경우 모든 TE 시간에 대해 4 Gy에서 가장 낮은 선량 불확도 값을 가졌다. 특히 TE 12 ms 경우 4 Gy 이후에는 가장 낮은값의 결과를 얻었다. 선량 불확도의 경우 6 Gy까지는 TE 시간에 따른 차이는 없으나 이후에는 TE 12 ms가 가장 나은 결과를 얻었다. 선량 불확도의 겨우 6 Gy까지는 모든 TE 시간에 대해 차이가 미미하나 8 Gy 이상에는 20 ms가 가장 우수한 선량 분해능 값을 가졌다. 선량 분해능 값 역시 NEX 3에서 가장 우수한 값을 가졌고 2 NEX일 때 가장 높은 분해능 값을 가졌다. 본 연구 결과 영상 두께와 NEX의 결과는 영상 두께가 얇은 경우 NEX가 높을수록 우수한 결과를 얻었고 영상 두께가 두꺼워 질수록 NEX가 낮아야 함을 확인했다.

In order to verify exact dose distributions in the state-of-the-art radiation techniques, a newly designed three-dimensional dosimeter and technique has been took strongly into consideration. The main purpose of our study is to verify the optimized parameters of polymer gel as a real volumetric dosimeter in terms of the various study of MRI. We prepared a gel dosimeter by combing 8% of gelatin, 8% of MAA, and 10 mM of THPC. We used a Co-60 gamma-ray teletherapy unit and delivered doses of 0, 2, 4, 6, 8, 10, 12, and 14 Gy to each polymer gel with a solid phantom. We used a fast spin-echo pulse to acquire the characterized T2 time of MRI. The signal noise ratio (SNR) of the head & neck coil was a relatively lower sensitivity than the body coil; therefore the dose uncertainty of head & neck coil would be lower than body coil's. But the dose uncertainty and resolution of the head & neck coil were superior to the body coil in this study. The TR time between 1,500 ms and 2,000 ms showed no significant difference in the dose resolution, but TR of 1,500 ms showed less dose uncertainty. For the slice thickness of 2.5 mm, less dose uncertainty of TE times was at 4 Gy, as well, it was the lowest result over 4 Gy at TE of 12 ms. The dose uncertainty was not critical up to 6 Gy, but the best dose resolution was obtained at 20 ms up to 8 Gy. The dose resolution shows the lowest value was over 20 ms and was an excellent result in the number of excitation (NEX) of three. The NEX of two was the highest dose resolution. We concluded that the better result of slice thickness versus NEX was related to the NEX increment and thin slice thickness.

키워드

참고문헌

  1. Ezzell GA, Galvin JM, Plata JR, et al: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys 30:2089-2115 (2003) https://doi.org/10.1118/1.1591194
  2. Ezzell GA, Burmeister JW, Dogan N, et al: IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36:5359-5373 (2009) https://doi.org/10.1118/1.3238104
  3. Papagianis P, Karaiskkos P, Kozicki M, et al: Three-dimensional dose verification of the clinical application of gamma knife stereotacitic radiosurgery using polymer gel and MRI. Phys Med Biol 50:1979-1990 (2005) https://doi.org/10.1088/0031-9155/50/9/004
  4. Oldham M, Baustert I, Smith TAD, et al: An investigation into the dosimetry of a nine-field tomotherapy irradiation using BANG-gel dosimetry. Phys Med Biol 43:1113-1132 (1998) https://doi.org/10.1088/0031-9155/43/5/005
  5. Maryanski MJ, Schulz RJ, Ibbott GS, et al: Magnetic resonance imaging of radiation dose distributions using a polymer gel dosimeter. Med Biol 39:1437-1455 (1994) https://doi.org/10.1088/0031-9155/39/9/010
  6. Maryanski MJ, Ibbott GS, Eastman P, et al: Radiation therapy dosimetry using magnetic resonance imaging of polymer gels. Med Phys 23:699-705 (1996) https://doi.org/10.1118/1.597717
  7. Mcjury M, Oldham M, Cosgrove VP, et al: Radiation dosimetry using polymer gels: methods and applications. Br J Radiol 73:919-929 (2000) https://doi.org/10.1259/bjr.73.873.11064643
  8. Kang HJ , Cho SJ , Jeong EK, et al: The Use of Polymer Gel for the Visualization of 3-D Dose Distribution in Brachytherapy Using Magnetic Resonance Imaging. Korean Journal of Medical Physics 9:207-215 (1998)
  9. Pappas E, Maris T, Angelopoulos A, et al: A new polymer gel for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 44:2677-2684 (1999) https://doi.org/10.1088/0031-9155/44/10/320
  10. Deene YD, Hurley C, Venning A, et al: A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441-3463 (2002) https://doi.org/10.1088/0031-9155/47/19/301
  11. Baustert IC, Oldham M, Smith TAD, et al: Optimized MR imaging for polyacrylamide gel dosimetry. Phys Med Biol 45:847-858 (2000) https://doi.org/10.1088/0031-9155/45/4/303
  12. Berg A, Ertl A, Moser E: High resolution polymer gel dosimetry by parameter selective MR-microimaging on a whole body scanner at 3 T. Med Phys 28:833-843 (2001) https://doi.org/10.1118/1.1358304
  13. Barasa P, Seimenis I, Kipouros P, et al: Polymer gel dosimetry using a three-dimensional MRI acquisition technique. Med Phys 29:2506-2516 (2002) https://doi.org/10.1118/1.1514657
  14. Deene YD: Fundamentals of MRI measurements for gel dosimetry. J Physics: Conference Series 3:87-114 (2004) https://doi.org/10.1088/1742-6596/3/1/009
  15. Olding T, Holmes O, Schreiner LJ: Con beam optical computed tomography for gel dosimetry I: scanner characterization. Phys Med Biol 55:2819-2840 (2010) https://doi.org/10.1088/0031-9155/55/10/003
  16. Oldham M, Kim L: Optical CT gel-dosimetry II: Optical artifacts and geometrical distortion. Med Phys 31:1093-1104 (2004) https://doi.org/10.1118/1.1655710
  17. Vandecateele J, De Deene Y: Preliminary evaluation of optical CT scanning versus MRI for nPAG gel dosimetry: the Ghent experience. J Physics: Conference Series 164:12034 (2009) https://doi.org/10.1088/1742-6596/164/1/012034
  18. Hill B, Venning AJ, Baldock C: A preliminary study of the novel application of normoxic polymer gel dosimeters for the measurement of CTDI on diagnostic X-ray CT scanners. Med Phys 32:1589-1597 (2005) https://doi.org/10.1118/1.1925181
  19. Hill B, Venning AJ, Baldock C: The dose response of normoxic polymer gel dosimeters measured using X-ray CT. The British Journal of Radiology 78:623-630 (2005) https://doi.org/10.1259/bjr/46029447
  20. Mather ML, Charles PH, Baldock C: Measurement of ultrasonic attenuation coefficient in polymer gel dosimeters. Phys Med Biol 48:N269-N275 (2003) https://doi.org/10.1088/0031-9155/48/20/N01
  21. Mather ML, Collings AF, Bajenov N, et al: Ultrasonic absorption in Polymer gel dosimeters. Ultrasonics 41:551-559 (2003) https://doi.org/10.1016/S0041-624X(03)00153-7
  22. Mather ML, Baldock C: Ultrasound tomography imaging of radiation dose distributions in polymer gel dosimeters: Preliminary study. Med Phys 30:2140-2148 (2003) https://doi.org/10.1118/1.1590751
  23. Lepage M, Jayasakera PM, Bäck SÅJ, et al: Dose resolution optimization of polymer gel dosimeters using different monomers. Phys Med Biol 46:2665-2680 (2001) https://doi.org/10.1088/0031-9155/46/10/310
  24. Baldock C, Lepage M, Bäck SÅJ, et al: Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449-460 (2001) https://doi.org/10.1088/0031-9155/46/2/312
  25. De Deene Y, de Qalle RV, Achten E, De Wagter C: Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal Processing 70:85-101 (1998) https://doi.org/10.1016/S0165-1684(98)00115-7
  26. Cho SJ, Shim SJ, Kim CY, et al: Analysis of the dosimetric characteristic of normoxic polymer gel by magnetic resonace images. J Korean Physical Society 56:874-879 (2010) https://doi.org/10.3938/jkps.56.874
  27. Maryanski MJ, Aude C, Gore JC: Effect of crosslinking and temperature on the dose response of a BANG polymer gel dosimeter Phys Med Biol 43:303-311 (1997)
  28. Korean Soc Magn Reson: Magnetic Resonance Imaging. 1st ed, Ilchokak: Seoul, (2008)