참고문헌
- Clark, D.E., and Pickett, S.D. (2000). Computational methods for the prediction of 'drug-likeness'. Drug Discov Today 5, 49-58. https://doi.org/10.1016/S1359-6446(00)80001-X
- Schneider, G., and Böhm, H.J. (2002). Virtual screening and fast automated docking methods. Drug Discov Today 7, 64-70. https://doi.org/10.1016/S1359-6446(01)02091-8
- Byvatov, E., Fechner, U., Sadowski, J., and Schneider G. (2003). Comparison of Support Vector and Artificial Neural Network System for Drug/ Nondrug Classification. J Chem Inf Comput Sci 43, 1882-1889 https://doi.org/10.1021/ci0341161
- Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach Learn 20, 273-297.
- Han, L.Y., Zheng, C. J., Xie, B., Jia, J., Ma, X.H., Zhu, F., Lin, H.H., Chen, X., and Chen, Y.Z. (2007). Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov Today 12, 7-8.
- Yap, C.W. and Chen, Y.Z. (2004). Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. J Chem Inf Model 45, 982-992.
- Yang, Z.R., and Chou, K.C. (2004). Bio-support Vector Machines for Computational Proteomics. Bioinformatics 20, 735-741. https://doi.org/10.1093/bioinformatics/btg477
- Mahe, P., Ueda, N., Akutsu, T., Perret, J.L., and Vert, J.P. (2005). Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines. J Chem Inf Model 45, 939-951. https://doi.org/10.1021/ci050039t
- Burbidge, R., Trotter, M., Buxton, B., and Holden, S. (2001). Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26, 5-14. https://doi.org/10.1016/S0097-8485(01)00094-8
- Warmuth, M.K., Liao, J., Ratsch, G., Mathieson, M., Putta, S., and Lemmen, C. (2003). Active learning with Support Vector Machines in the drug discovery process. J Chem Inf Comput Sci 43, 667-673. https://doi.org/10.1021/ci025620t
- Wilton, D., Willett, P., Lawson, K., and Mullier, G. (2003). Comparison of ranking methods for virtual screening in lead-discovery programs. J Chem Inf Comput Sci 43, 469-474. https://doi.org/10.1021/ci025586i
- Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., and Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942), 834-40. https://doi.org/10.1126/science.1175371
- Vannini, A., Volpari, C., Gallinari, P., Jones, P., Mattu, M., Carfí, A., De Francesco R., Steinkühler, C., and Di Marco, S. (2007). Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8- substrate complex. EMBO Reports 8, 879-884. https://doi.org/10.1038/sj.embor.7401047
- Dokmanovic, M., Clarke, C., and Marks, P.A. (2007). Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10), 981-9. https://doi.org/10.1158/1541-7786.MCR-07-0324
- Valenzuela-Fernández, A., Cabrero J.R., Serrador J.M., and Sánchez- Madrid, F. (2008). HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions error. Trends Cell Biol 18(6), 291-297. https://doi.org/10.1016/j.tcb.2008.04.003
- Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5, 769-784. https://doi.org/10.1038/nrd2133
- Brodeur, G.M. (2003). Neuroblastoma: Biological insights into a clinical enigma. Nat Rev Cancer 3, 203-216. https://doi.org/10.1038/nrc1014
- Oehme, I., Deubzer, H.E., Wegener, D., Pickert, D., Linke, J.P., Hero, B., Kopp-Schneider, A., Westermann, F., Ulrich, S.M., von Deimling, A., Fischer, M., and Witt, O. (2009). Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15, 91-99. https://doi.org/10.1158/1078-0432.CCR-08-0684
- Durst, K.L., Lutterbach, B., Kummalue, T., Friedman, A.D., and Hiebert, S.W. (2003). The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 23, 607-619. https://doi.org/10.1128/MCB.23.2.607-619.2003
- Thangapandian, S., John, S., Sakkiah, S., and Lee, K.W. (2010). Dockingenabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery. J Mol Graph Model 29, 382-395. https://doi.org/10.1016/j.jmgm.2010.07.007
- Thangapandian S., John, S., Sakkiah, S., and Lee, K.W. (2010). Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design. Eur J Med Chem 45, 4409-4417. https://doi.org/10.1016/j.ejmech.2010.06.024
- Abu-Awwad F. M. (2009). A computational Study of Histamine H1-Receptor Agonist Activity Using QSPR and Molecular Surface Electrostatic Potential. Imt J ChemTech Res 1(3), 742-750.
- Todeschini, R., and Consonni, V. (2000). Handbook of Molecular Descriptors, Weinheim: Wiley-VCH.
- Chang, C. C., and Lin, C. J. (2011). LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology doi.acm.org/10.1145/ 1961189.1961-199. Software available at http://www.csie.ntu.edu.tw/-cjlin/lib svm
피인용 문헌
- Ligand release mechanisms and channels in histone deacetylases vol.34, pp.26, 2013, https://doi.org/10.1002/jcc.23390