참고문헌
- Smalle, J., and Vierstra, R.D. (2004). The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55, 555-590. https://doi.org/10.1146/annurev.arplant.55.031903.141801
- Stone, S.L., and Callis, J. (2007). Ubiquitin ligases mediate growth and development by promoting protein death. Curr Opin Plant Biol 10, 624-632. https://doi.org/10.1016/j.pbi.2007.07.010
- Feldman, R., Correll, C.C., Kaplan, K.B., and Deshaies, R.J. (1997). A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221-230. https://doi.org/10.1016/S0092-8674(00)80404-3
- Cardozo, T., and Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5, 739-751. https://doi.org/10.1038/nrm1471
- Schulman, B.A., Carrano, A.C., Jeffrey, P.D., Bowen, Z., Kinnucan, E.R.E., Finnin, M.S., Elledge, S.J., Harper, J.W., Pagano, M., and Pavletich, N.P. (2000). Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381-386. https://doi.org/10.1038/35042620
- Cao, P.R., Kim, H.J., and Lecker, S.H. (2005). Ubiquitin-protein ligases in muscle wasting. The Int J Biochem Cell Biol 37, 2088-2097. https://doi.org/10.1016/j.biocel.2004.11.010
- Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274. https://doi.org/10.1016/S0092-8674(00)80098-7
- Clifford, R., Lee, M.H., Nayak, S., Ohmachi, M., Giorgini, F., and Schedl, T. (2000). FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127, 5265-5276.
- Galan, J.M., Wiederkehr, A., Seol, J.H., Haguenauer-Tsapis, R., Deshaies, R.J., Riezman, H., and Peter, M. (2001). Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Mol Cell Biol 21, 3105-3117. https://doi.org/10.1128/MCB.21.9.3105-3117.2001
- Smaldone, S., Laub, F., Else, C., Dragomir, C., and Ramirez, F. (2004). Identification of MoKA, a novel F-box protein that modulates Kruppellike transcription factor 7 activity. Mol Cell Biol 24, 1058-1069. https://doi.org/10.1128/MCB.24.3.1058-1069.2004
- Levin, J.Z., and Meyerowitz, E.M. (1995). UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7, 529-548. https://doi.org/10.1105/tpc.7.5.529
- Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W., and Crosby, W.L. (1999). The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F box protein required for normal patterning and growth in the floral meristem. Plant J 20, 433-445. https://doi.org/10.1046/j.1365-313x.1999.00617.x
- Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G., and Bhattacharya, D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21, 809-818. https://doi.org/10.1093/molbev/msh075
- Lau, S., Jurgens, G., and De Smet, I. (2008). The evolving complexity of the auxin pathway. Plant Cell 20, 1738-1746. https://doi.org/10.1105/tpc.108.060418
- Baldauf, S.L. (2008). An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46, 263-273.
- Simon, D., and Sylvie, R. (2011). Microarray estimation of genomic inter- strain variability in the genus Ectocarpus (Phaeophyceae). BMC Mol Biol 12, 1-12. https://doi.org/10.1186/1471-2199-12-1
- Le Bail, A., Billoud, B., Kowalczyk, N., Kowalczyk, M., Gicquel, M., Le Panse, S., Stewart, S., Scornet, D., Cock, J.M., and Ljung, K. (2010). Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153, 128-144. https://doi.org/10.1104/pp.109.149708
- Thomas, J.H. (2006). Adaptive evolution in two large families of ubiquitin- ligase adapters in nematodes and plants. Genome Res 16, 1017- 1030. https://doi.org/10.1101/gr.5089806
- Clark, R.M., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T.T., Fu, G., and Hinds, D.A. (2007). Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338-342. https://doi.org/10.1126/science.1138632
- Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian Fbox proteins. Gene Dev 18, 2573-2580. https://doi.org/10.1101/gad.1255304
- Cenciarelli, C., Chiaur, D., Guardavaccaro, D., Parks, W., Vidal, M., and Pagano, M. (1999). Identification of a family of human F-box proteins. Curr Biol 9, 1177-1179, S1171-S1173. https://doi.org/10.1016/S0960-9822(00)80020-2
- Winston, J.T., Koepp, D.M., Zhu, C., Elledge, S.J., and Harper, J.W. (1999). A family of mammalian F-box proteins. Curr Biol 9, 1180-1182. https://doi.org/10.1016/S0960-9822(00)80021-4
- Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., Kapoor, S., Tyagi, A., and Khurana, J. (2007). F-box proteins in rice. Genomewide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143, 1467-1483. https://doi.org/10.1104/pp.106.091900
- Bella, J., Hindle, K., McEwan, P., and Lovell, S. (2008). The leucine-rich repeat structure. Cell Mol Life Sci 65, 2307-2333. https://doi.org/10.1007/s00018-008-8019-0
- Andrade, M.A., Perez-Iratxeta, C., and Ponting, C.P. (2001). Protein repeats: structures, functions, and evolution. J Struct Biol 134, 117-131. https://doi.org/10.1006/jsbi.2001.4392
- Neer, E.J., Schmidt, C.J., Nambudripad, R., and Smith, T.F. (1994). The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297-300. https://doi.org/10.1038/371297a0
- Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181-185. https://doi.org/10.1016/S0968-0004(99)01384-5
- Clissold, P.M., and Ponting, C.P. (2001). JmjC: cupin metalloenzymelike domains in jumonji, hairless and phospholipase A2 [beta]. Trends Biochem Sci 26, 7-9. https://doi.org/10.1016/S0968-0004(00)01700-X
- Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816. https://doi.org/10.1038/nature04433
- Lu, F., Li, G., Cui, X., Liu, C., Wang, X. J., and Cao, X. (2008). Comparative Analysis of JmjC Domain-containing Proteins Reveals the Potential Histone Demethylases in Arabidopsis and Rice. J Integr Plant Biol 50, 886-896. https://doi.org/10.1111/j.1744-7909.2008.00692.x
- Ponting, C., Schultz, J., and Bork, P. (1997). SPRY domains in ryanodine receptors (Ca2+-release channels). Trends Biochem Sci 22, 193-194. https://doi.org/10.1016/S0968-0004(97)01049-9
- Schumann, N., Navarro-Quezada, A., Ullrich, K., Kuhl, C., and Quint, M. (2011). Molecular Evolution and Selection Patterns of Plant F-Box Proteins with C-Terminal Kelch Repeats. Plant Physiol 155, 835-850. https://doi.org/10.1104/pp.110.166579
- Bailey, T.L., and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28-36.
- Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34, W369-373. https://doi.org/10.1093/nar/gkl198
- Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Res 14, 1188-1190. https://doi.org/10.1101/gr.849004
- Imafuku, I., Waragai, M., Takeuchi, S., Kanazawa, I., Kawabata, M., Mouradian, M.M., and Okazawa, H. (1998). Polar amino acid-rich sequences bind to polyglutamine tracts. Biochem Biophys Res Comm 253, 16- 20. https://doi.org/10.1006/bbrc.1998.9725
- Tajima, T., Oda, A., Nakagawa, M., Kamada, H., and Mizoguchi, T. (2007). Natural variation of polyglutamine repeats of a circadian clock gene ELF3 in Arabidopsis. Plant Biotechnol 2, 237-240.
- Saleem, Q., Anand, A., Jain, S., and Brahmachari, S.K. (2001). The polyglutamine motif is highly conserved at the Clock locus in various organisms and is not polymorphic in humans. Hum Genet 109, 136-142. https://doi.org/10.1007/s004390100550
- Lindqvist, C., Laakkonen, L., and Albert, V. (2007). Polyglutamine variation in a flowering time protein correlates with island age in a Hawaiian plant radiation. BMC Evol Biol 7, 105. https://doi.org/10.1186/1471-2148-7-105
- Cavalier-Smith, T. (2003). Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Phil Trans R Soc B 358, 109. https://doi.org/10.1098/rstb.2002.1194
- Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., Mc- William, H., Valentin, F., Wallace, I., Wilm, A., Lopez, R. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
- Morgenstern, B., and Atchley, W.R. (1999). Evolution of bHLH transcription factors: modular evolution by domain shuffling? Mol Biol Evol 16, 1654. https://doi.org/10.1093/oxfordjournals.molbev.a026079
- Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R. (2005). InterProScan: protein domains identifier. Nucleic Acids Res 33, W116-120. https://doi.org/10.1093/nar/gki442
- Bernhard, G., Yann, G., and Mark, C.J. (2008). HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9, 393. https://doi.org/10.1186/1471-2105-9-393
- Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
- Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
- Zhang, J., Rosenberg, H.F., and Nei, M. (1998). Positive Darwinian selection after gene duplication in primate ribonuclease genes. PNAS 95, 3708-3713. https://doi.org/10.1073/pnas.95.7.3708
피인용 문헌
- Analyses ofPhyscomitrella patensAnkyrin Repeat Proteins by Computational Approach vol.2016, 2016, https://doi.org/10.1155/2016/9156735
- In silico analysis reveals the presence of a large number of Ankyrin repeat containing proteins in Ectocarpus siliculosus vol.4, pp.4, 2012, https://doi.org/10.1007/s12539-012-0134-9