DOI QR코드

DOI QR Code

Current Status of Botanical Pesticides for Crop Protection

  • Dang, Quang Le (Eco-friendly Research Group, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lim, Chi-Hwan (College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Jin-Cheol (Eco-friendly Research Group, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
  • Received : 2012.06.11
  • Accepted : 2012.09.03
  • Published : 2012.09.30

Abstract

The problems caused by synthetic pesticides have led the need for effective biodegradable pesticides with greater selectivity. Botanical pesticides are generally recognized as safe in agriculture systems. Thus, they have been regarded as attractive alternatives to synthetic chemical pesticides for the pest management. Both lower efficacy and higher costs of production make botanicals more expensive to use than conventional pesticides. Moreover, only a small portion of plant-derived metabolites among a number of bioactive metabolites are in use because commercialization of botanicals is inhibited by several problems such as toxicity, or high production cost. However, with the growing acceptance of botanical pesticides as an efficient crop protection alternative resulting in increasing demand, plant-based pesticides will play a significant role in achieving sustainable agriculture in future.

Keywords

References

  1. Addor, R. W. 1995. Insecticides. In: Agrochemicals from natural products, ed. by Godfrey, C.R.A., pp. 1−63, Marcel Dekker, New York, USA.
  2. Agrios, G. N. 2005. Plant Pathology. 5th ed. Elsevier Academic Press, Burlington, Mass., USA.
  3. Bang, K. H., Lee, D. W., Park, H. M. and Rhee, Y. H. 2000. Inhibition of fungal cell wall synthesizing enzymes by transcinnamaldehyde. Biosci. Biotechnol. Biochem. 64: 1061-1063. https://doi.org/10.1271/bbb.64.1061
  4. Cakir, A., Kordali, S., Zengin, H., Izumi, S. and Hirata, T. 2004. Composition and antifungal activity of essential oils isolated from Hypericum hyssopifolium and Hypericum heterophyllum. Flavour Fragr. J. 19: 62-68. https://doi.org/10.1002/ffj.1279
  5. Chandravadana, M. V., Nidiry, E. S. J., Khan, R. M. and Rao, M. S. 1993. Nematicidal activity of serpentine against Meloidogyne incognita. Fundam. Appl. Nematol. 17: 185-192.
  6. Chang, H. T., Cheng, Y. H., Wu, C. L., Chang, S. T., Chang, T. T. and Su, Y. C. 2008. Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresource Technol. 99: 6266-6270. https://doi.org/10.1016/j.biortech.2007.12.005
  7. Chitwood, D. J. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 40: 221-249. https://doi.org/10.1146/annurev.phyto.40.032602.130045
  8. Cho, J.-Y., Choi, G. J., Lee, S.-W., Lim, H. K., Jang, K. S., Lim, C. H., Cho, K. Y. and Kim, J.-C. 2006a. In vivo antifungal activity against various plant pathogenic fungi of curcuminoids isolated from the rhizomes of Curcuma longa. Plant Pathology J. 22: 94-96. https://doi.org/10.5423/PPJ.2006.22.1.094
  9. Cho, J.-Y., Kim, H. Y., Choi, G. J., Jang, K. S., Lim, H. K., Lim, C. H., Cho, K. Y. and Kim, J.-C. 2006b. Dehydro-alphalapachone isolated from Catalpa ovata stems: activity against plant pathogenic fungi. Pest Manag. Sci. 62: 414-418. https://doi.org/10.1002/ps.1180
  10. Cho, J.-Y., Choi, G. J., Lee, S.-W., Jang, K. S., Kim, H. K., Kim, C. H., Cho, C. H., Lee, S. O., Cho, K. Y. and Kim, J.-C. 2006c. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16: 280-285.
  11. Cho, J.-Y., Choi, G. J., Son, S. W., Jang, K. S., Lim, H. K., Lee, S. O., Sung, N. D., Cho, K. Y. and Kim, J.-C. 2007. Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Manag. Sci. 63: 935-940. https://doi.org/10.1002/ps.1420
  12. Choi, G. J., Lee, S. W., Jang, K. S., Kim, J. S., Cho, K. Y. and Kim, J.-C. 2004. Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews. Crop Prot. 23: 1215-1221. https://doi.org/10.1016/j.cropro.2004.05.005
  13. Choi, I. H., Kim, J., Shin, S. C. and Park, I. K. 2007a. Nematicidal activity of monoterpenoids against the pine wood nematode Bursaphelenchus xylophilus. Russ. J. Nematol. 15: 35-40.
  14. Choi, I. H., Park, J. Y., Shin, S. C., Kim, J. and Park, I. K. 2007b. Nematicidal activity of medicinal plant essential oils against the pine wood nematode Bursaphelenchus xylophilus. Appl. Entomol. Zool. 42: 97-401. https://doi.org/10.1303/aez.2007.97
  15. Choi, N. H., Choi, G. J., Min, B. S., Jang, K. S., Choi, Y. H., Kang, M. S., Park, M. S., Choi, J. E., Bae, B. K. and Kim, J.-C. 2009. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi. J. Appl. Microbiol. 106: 2057-2063. https://doi.org/10.1111/j.1365-2672.2009.04175.x
  16. Choi, N. H., Kwon, H. R., Son, S. W., Choi, G. J., Choi, Y. H., Jang, K. S., Lee, S. O., Choi, J. E., Ngoc, L. H. and Kim, J.-C. 2008. Nematicidal activity of malabaricones isolated from Myristica malabarica fruit rinds against Bursaphelenchus xylophilus. Nematology 6: 801-807.
  17. Copping, L. G. and Duke, S. O. 2007. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 63: 524-554. https://doi.org/10.1002/ps.1378
  18. Copping, L. G. and Menn, J. J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56: 651-676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U
  19. D'Addabbo, T., Carbonara, T., Leonetti, P., Radicci, V., Tava, A. and Avato, P. 2010. Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa. Phytochem. Rev. DOI: 10.1007/s11101-010-9180-2.
  20. Davis, E. L., Meyers, D. M., Dullum, C. J. and Feitelson, J. S. 1997. Nematicidal activity of fatty acid esters on soybean cyst and root nematodes. J. Nematol. 29: 677-684.
  21. Dayan, F. E., Cantrell, C. L. and Duke, S. O. 2009. Natural products in crop protection. Bioorg. Med. Chem. 17: 4022-4034. https://doi.org/10.1016/j.bmc.2009.01.046
  22. Echeverrigaray, S., Zacaria, J. and Beltrao, R. 2010. Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology 100: 199-203. https://doi.org/10.1094/PHYTO-100-2-0199
  23. Engelmeier, D. and Hadacek, F. 2006. Antifunal natural products: assays and applications. In: Advances in Phytomedicine, Naturally Occurring Bioactive Compounds, Vol. 3, ed. by Rai, M. and Carpenella, M. C., pp. 423-467. Elsevier Science B.V., Netherlands.
  24. Ghisalberti, E. L. 2002. Secondary metabolites with antinematodal activity. In: Studies in Natural Products Chemistry, Vol. 26, ed. by Atta-ur-Rahman, pp. 425-506. Elsevier Science B.V., Netherlands.
  25. Gonzalez-Coloma, A., Reina, M., Diaz, C. E. and Fraga, B. M. 2010. Natural product-based biopesticides for insect control. In: Comprehensive Natural Products II, ed. by L. Mander and H.-W. Liu, pp. 237-268. Elsevier Science B.V., Oxford, UK.
  26. Gupta, R. and Sharma, N. K. 1993. A study of the nematicidal activity of allicin-an active principle in garlic, Allium sativum L., against root-knot nematode, Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949. Int. J. Pest Manag. 39: 390-392. https://doi.org/10.1080/09670879309371828
  27. Hong, L., Li, G., Zhou, W., Wang, X. and Zhang, K. 2007. Screening and isolation of a nematicidal sesquiterpene from Magnolia grandiflora L. Pest Manag. Sci. 63: 301-305. https://doi.org/10.1002/ps.1337
  28. Hu, K., Dong, A., Kobayashi, H., Iwasaki, S. and Yao, X. 2003. Antifungal agents from traditional chinese medicines against rice blast fungus Pyricularia oryzae Cavara. In: Plant-derived antimycotics: current trends and future prospects, ed. by M. Rai and D. Mares, pp. 525-549. The Haworth Press, Inc., Binghamton, NY, USA.
  29. Isman, M. B. 2000a. Biopesticides based on phytochemicals. In: Koul, O. and Dhaliwal, G. S. (Eds.), Phytochemical Biopesticides. Harwood Academic, Amsterdam, Netherlands, pp. 1-12.
  30. Isman, M. B. 2000b. Plant essential oils for pest and disease management. Crop Prot. 19: 603-608. https://doi.org/10.1016/S0261-2194(00)00079-X
  31. Isman, M. B. 2006. Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Phytopathol. 51: 45-66.
  32. Jeon, J.-H., Kim, Y.-K., Lee, S.-G., Lee, G.-H. and Lee, H.-S. 2011. Insecticidal activities of a Diospyros kaki root-isolated constituent and its derivatives against Nilaparvata lugens and Laodelphax striatellus. J. Asia Pacific Entomol. 14: 449-453. https://doi.org/10.1016/j.aspen.2011.07.005
  33. Jespers, A. and De Waard, M. 1993. Natural products in plant protection. Neth. J. Plant. Pathol. 99: 109-117. https://doi.org/10.1007/BF03041401
  34. Kawazu, K., Nishii, Y. and Nakajima, S. 1980. Two nematicidal substances from roots of Cirsium japonicum. Agric. Biol. Chem. 44: 903-906. https://doi.org/10.1271/bbb1961.44.903
  35. Kim, M.-K., Choi, G. J. and Lee, H.-S. 2003. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J. Agric. Food Chem. 51: 1578-1581. https://doi.org/10.1021/jf0210369
  36. Kim, J.-C., Choi, G. J., Lee, S.-W., Kim, J.-S., Chung, K. Y. and Cho, K. Y. 2004a. Screening for antifungal extracts against various plant pathogenic fungi and control of powdery mildew with extracts of Achyranthes japonica and Rumex crispus. Pest Manag. Sci. 60: 803-808. https://doi.org/10.1002/ps.811
  37. Kim, Y. M., Lee, C. H., Kim, H. G. and Lee, H. S. 2004b. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J. Agric. Food Chem. 52: 6096-6100. https://doi.org/10.1021/jf049379p
  38. Kim, J., Seo, S. M., Lee, S. G., Shin, S. C. and Park, I. K. 2008. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem. 56: 7316-7320. https://doi.org/10.1021/jf800780f
  39. Kong, J. O., Lee, S. M., Moon, Y. S., Lee, S. G. and Ahn, Y. J. 2006. Nematicidal activity of plant essential oils against Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). J. Asia-Pacific Entomol. 9: 173−178. https://doi.org/10.1016/S1226-8615(08)60289-7
  40. Kong, J. O., Lee, S. M., Moon, Y. S., Lee, S. G. and Ahn, Y. J. 2007a. Nematicidal activity of cassia and cinnamon oil compounds and related compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 39: 31-36.
  41. Kong, J. O., Park, I. K., Choi, K. S., Shin, S. C. and Ahn, Y. J. 2007b. Nematicidal and propagation activities of thyme red and white oil compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 39: 237-242.
  42. Lee, H. S. 2007. Fungicidal property of active component derived from Acorus gramineus rhizome against phytopathogenic fungi. Bioresource Technol. 98: 1324-1328. https://doi.org/10.1016/j.biortech.2006.05.018
  43. Lee, H.-S., Shin, W.-K., Song, C., Cho, K.-Y. and Ahn, Y.-J. 2001. Insecticidal activities of ar-turmerone identified in Curcuma longa rhizome against Nilaparvata lugens (Homoptera: Delphacidae) and Plutella xylostella (Lepidoptera: Yponomeutidae). J. Asia Pacific Entomol. 4: 181-185. https://doi.org/10.1016/S1226-8615(08)60121-1
  44. Luo, D. Q., Wang, H., Tian, X., Shao, H. J. and Liu, J. K. 2005. Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag. Sci. 61: 85-90. https://doi.org/10.1002/ps.953
  45. Matsuda, K., Kimura, M., Komai, K. and Hamada, M. 1989. Nematicidal activities of (-)-N-methylcytisine and (-)- anagyrine from Sophora flavescens against pine wood nematodes. Agric. Biol. Chem. 53: 2287-2288. https://doi.org/10.1271/bbb1961.53.2287
  46. Matsuda, K., Yamada, K., Kimura, M. and Hamada, M. 1991. Nematicidal activity of matrine and its derivatives against pine wood nematodes. J. Agric. Food Chem. 39: 181-191.
  47. Mordue, A. J. and Nisbet, A. J. 2000. Azadirachtin from the neem tree Azadirachta indica: its actions against insects. An. Soc. Entomol. Bras. 29: 615-632. https://doi.org/10.1590/S0301-80592000000400001
  48. Muller-Riebau, F., Berger, B. and Yegen, O. 1995. Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J. Agric. Food Chem. 43: 2262-2266. https://doi.org/10.1021/jf00056a055
  49. Nidiry, E. S. J., Khan, R. M. and Reddy, P. P. 1993. In vitro nematicidal activity of Gloriosa superb seed extract against Meloidogyne incognita. Nematol. Medit. 21: 127-128.
  50. Ntalli, N. G., Ferrari, F., Giannakou, I. and Menkissoglu-Spiroudi, U. 2011. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag. Sci. 67: 341-351. https://doi.org/10.1002/ps.2070
  51. Oerke, E. C. and Dehne, H.-W. 2004. Safeguarding productionlosses in major crops and the role of crop protection. Crop Prot. 23: 275-285. https://doi.org/10.1016/j.cropro.2003.10.001
  52. Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z. and Spiegel, Y. 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90: 710-715. https://doi.org/10.1094/PHYTO.2000.90.7.710
  53. Park C., Kim S.-I. and Ahn Y.-J. 2003. Insecticidal activity of asarones identified in Acorus gramineus rhizome against three coleopteran stored-product insects. J. Stored Prod. Res. 39: 333-342. https://doi.org/10.1016/S0022-474X(02)00027-9
  54. Park, I. K., Kim, J., Lee, S. G. and Shin, S. C. 2007. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus Xylophilus). J. Nematol. 39: 275-279.
  55. Ping, G., Taiping, H., Rong, G., Qiu, C. and Shigui, L. 2001. Activity of the botanical aphicides 1,5-diphenyl-1-pentanone and 1,5-diphenyl-2-penten-1-one on two species of Aphididnae. Pest Manag. Sci. 57: 307-310. https://doi.org/10.1002/ps.297
  56. Ploegn, A. T. 1999. Greenhouse studies on the effect of Marigolds (Tagetes spp.) on four Meloidogyne species. J. Nematol. 31: 62-69.
  57. Rameshwar Singh, R. 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 29: 13-920.
  58. Saha, S., Walia, S., Kumar, J. and Parmar, B. S. 2010. Structurebiological activity relationships in triterpenic saponins: the relative activity of protobassic acid and its derivatives against plant pathogenic fungi. Pest Manag. Sci. 66: 825-831.
  59. Sahni, S., Maurya, S., Singh, U. P., Singh, A. K., Singh, V. P. and Pandey, V. B. 2005. Antifungal activity of nor-securine against some phytopathogenic fungi. Mycobiology 33: 97-103. https://doi.org/10.4489/MYCO.2005.33.2.097
  60. Sanchez Deviala, S., Brodie, B. B., Rodriguez, E. and Gibson, D. M. 1998. The potential of thiarubrine C as a nematicidal agent against plant-parasitic nematode. J. Nematol. 30: 192−200.
  61. Saniewska, A., Jarecka, A., Bialy, Z. and Jurzysta, M. 2006. Antifungal activity of saponins originated from Medicago hybrida against some ornamental plant pathogens. Acta Agrobot. 59: 51-58. https://doi.org/10.5586/aa.2006.061
  62. Shakil, N. A., Pankaj Kumar, J., Pandey, R. K. and Saxena, D. B. 2008. Nematicidal prenylated flavanones from Phyllantus niruri. Phytochemistry 69: 759-764. https://doi.org/10.1016/j.phytochem.2007.08.024
  63. Singh, A. K., Pandey, M. B., Singh, S., Singh, A. K. and Singh, U. P. 2008. Antifungal activity of securinine against some plant pathogenic fungi. Mycobiology 36: 99-10. https://doi.org/10.4489/MYCO.2008.36.2.099
  64. Suga, T., Ohta, S., Munesada, K., Ide, N., Kurokawa, M., Shimizu, M. and Ohta, E. 1993. Endogenous pine wood nematicidal substances in pines, Pinus massoniana, P. strobus and P. palustris. Phytochemistry 33: 1395-1401. https://doi.org/10.1016/0031-9422(93)85098-C
  65. Thoden, T. C., Boppré, M. and Hallmann, J. 2009a. Effects of pyrrolizidine alkaloids on the performance of plant-parasitic and free-living nematodes. Pest Manag. Sci. 65: 823-830. https://doi.org/10.1002/ps.1764
  66. Thoden, T. C., Hallmann, J. and Boppre, M. 2009b. Effects of plants containing pyrrolizidine alkaloids on the northern rootknot nematode Meloidogyne hapla. Europ. J. Plant Pathol. 123: 27-36. https://doi.org/10.1007/s10658-008-9335-9
  67. Udalova, Z. V., Zinov'eva, S. V., Vasil'eva, I. S. and Paseshnichenko, V. A. 2004. Correlation between the structure of plant steroids and their effects on phytoparasitic nematodes. Appl. Biochem. Microbiol. 40: 93-97. https://doi.org/10.1023/B:ABIM.0000010362.79928.77
  68. Vidhyasekaran, P. 2004. Concise Encyclopedia of Plant Pathology. Food Products Press, New York, USA.
  69. Yang, X., Yang, L., Wang, S., Yu, D. and Ni, H. 2007. Synergistic interaction of physcion and chrysophanol on plant powdery mildew. Pest Manag. Sci. 63: 511-515. https://doi.org/10.1002/ps.1362
  70. Yen, T. B., Chang, H. T., Hsieh, C. C. and Chang, S. T. 2008. Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood. Bioresource Technol. 99: 4871-4877. https://doi.org/10.1016/j.biortech.2007.09.037
  71. Zhao, B. G. 1999. Nematicidal activity of quinolizidine alkaloids and the functional group pairs in their molecular structure. J. Chem. Ecol. 25: 2205-2214. https://doi.org/10.1023/A:1020809521068
  72. Zhou, C.-X., Liu, J.-Y., Ye, W.-C., Liu, C.-H. and Tan, R.-X. 2003. Neoverataline A and B, two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense. Tetrahedron 59: 5743-5747. https://doi.org/10.1016/S0040-4020(03)00882-2

Cited by

  1. vol.20, pp.4, 2016, https://doi.org/10.7585/kjps.2016.20.4.293
  2. Chinese leek (Allium tuberosum Rottler ex Sprengel) reduced disease symptom caused by root-knot nematode vol.15, pp.2, 2016, https://doi.org/10.1016/S2095-3119(15)61032-2