DOI QR코드

DOI QR Code

Biotransformation of Pregnane Glycosides from Cynanchum wilfordii Roots by β-Glucosidase

당 분해효소를 이용한 백하수오 뿌리로부터 분리한 Pregnane Glycosides의 생전환

  • Yoon, Mi-Young (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Cuong, Mai Nguyen (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Choi, Gyung-Ja (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Cha, Byeong-Jin (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Jin-Cheol (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology)
  • 윤미영 (한국화학연구원 친환경신물질연구그룹) ;
  • 끄엉 마이뉴엔 (한국화학연구원 친환경신물질연구그룹) ;
  • 최경자 (한국화학연구원 친환경신물질연구그룹) ;
  • 최용호 (한국화학연구원 친환경신물질연구그룹) ;
  • 장경수 (한국화학연구원 친환경신물질연구그룹) ;
  • 차병진 (충북대학교 식물의학과) ;
  • 김진철 (한국화학연구원 친환경신물질연구그룹)
  • Received : 2012.08.17
  • Accepted : 2012.09.12
  • Published : 2012.09.30

Abstract

Biotransformation is an eco-friendly and efficient method for enhancing the bioavailability of biopesticide. To increase the antifungal activity of the crude extract of Cynanchum wilfordii roots against barely powdery mildew, we performed biotransformation of wilfoside C1G using ${\beta}$-glucosidase (cellobiase from Aspergillus niger). The mixture (G sample) of partially purified wilfoside C1G and cynauricuoside A (K1G) was treated with ${\beta}$-glucosidase to remove a glucopyranosyl moiety. The enzyme completely converted C1G to C1N and K1G to K1N. Optimal conditions for enzymatic biotransformation of G sample were determined to be 10% ethanol, 1,555 ${\mu}U$ ${\beta}$-glucosidase/ml, pH 5, and $45^{\circ}C$. In in vivo experiment, the G sample transformed by ${\beta}$-glucosidase showed stronger antifungal activity against barley powdery mildew than the non-treated G sample. These results suggest that ${\beta}$-glucosidase biotransformation can be applied to increase the antifungal activity of the crude extract of C. wilfordii roots against powdery mildews.

생물전환은 친환경적이며 생물이용성을 증가시킬 수 있는 효과적인 방법이다. 백하수오 추출물을 이용해 보리 흰가루병에 대한 항균활성을 증진시키기 위하여 본 연구자들은 ${\beta}$-glucosidase를 이용하여 wilfoside C1G의 생물전환을 수행하였다. Wilfoside C1G와 cynauricuoside A(K1G)가 포함된 G 시료로부터 glucopyranosyl moiety를 분해하기 위하여 ${\beta}$-glucosidase를 처리하였다. 효소반응을 통해 wilfoside C1G와 K1G는 각각 wilfoside C1N과 wilfoside K1N으로 완전히 전환되었다. G 시료를 이용한 생물전환의 최적 조건은 에탄올 10%, 1,555 ${\mu}U$ ${\beta}$-glucosidase/ml, pH 5 및 $45^{\circ}C$로 결정되었다. 최적조건을 통해 생물전환을 실시한 후 흰가루병에 대한 방제효과를 조사한 결과, ${\beta}$-glucosidase에 의해 생물전환된 G 시료는 ${\beta}$-glucosidase가 처리되지 않은 G 시료보다 보리 흰가루병에 대해 우수한 방제효과를 나타냈다. 따라서 ${\beta}$-glucosidase를 이용한 생물전환은 흰가루병 방제 효과가 있는 백하수오 추출물의 항균활성을 증가시키는데 유용한 기술로 적용이 가능할 것으로 추정된다.

Keywords

References

  1. Akao, T. 1992. Metabolic activation of crude drug components by intestinal bacterial enzymes. Med. Pharm. Soc. 9: 1-13.
  2. Chang, K. C., Chung, S. Y., Chong, W. S., Suh, J. S., Kim, S. H., Noh, H. K., Seong, B. W., Ko, H. J. and Chun, K. W. 1993. Possible superoxide-radical induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. J. Pharmacol. Exp. Ther. 266: 992-1000.
  3. Cho, J.-Y., Choi, G. J., Lee, S.-W., Lim, H. K., Jang, K. S., Lim, C. H., Cho, K. Y. and Kim, J.-C. 2006. In vivo antifungal activity against various plant pathogenic fungi of curcuminoids isolated from Curcuma longa L. rhizomes. Plant Pathology J. 22: 94-96. https://doi.org/10.5423/PPJ.2006.22.1.094
  4. Choi, H. S., Zhu, M. F., Kim, C. S. and Lee, J. H. 2003. Studies of name and herbal origins of Ha-Soo-Oh. Korean J. Oriental Medicine 9: 81-89.
  5. Choi, J., Lee, H., Kim, Y., Kim, B., Kim, I. and Lee, C. 2012. Effect of Cynanchum wilfordii Radix effects on lipid compositions and blood pressure in spontaneously hypertensive rats. J. Korean Soc. Food Sci. Nutr. 41: 345-350. (In Korean) https://doi.org/10.3746/jkfn.2012.41.3.345
  6. Christakopoulos, P., Goodenough, P. W., Kekos, D., Macris, B. J., Claeyssens, M. and Bhat, M. K. 1994. Purification and characterisation of an extracellular beta-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. Eur. J. Biochem. 224: 379-385. https://doi.org/10.1111/j.1432-1033.1994.00379.x
  7. Dreessen, M., Eyssen, H. and Lemli, J. 1981. The metabolism of sennosides A and B by the intestinal microflora: in vitro and in vivo studies on the rat and the mouse. J. Pharm. Pharmacol. 33: 679-681. https://doi.org/10.1111/j.2042-7158.1981.tb13903.x
  8. Hayashi, K. and Mitsuhashi, H. 1975. Studies on the constituents of Asclepiadaceae plants. XXXII. Aglycones from Cynanchum wilfordii Hemsley. Chem. Pharma. Bulletin 23: 139-143. https://doi.org/10.1248/cpb.23.139
  9. Hwang, B.-Y., Kim, S. E., Kim, Y.-H., Kim, H. S., Hong, Y. S., Ro, J.-S., Lee, K.-S. and Lee, J.-J. 1999a. Pregnane glycoside multidrug-resistance modulators from Cynanchum wilfordii. J. Nat. Prod. 62: 640-643. https://doi.org/10.1021/np980479x
  10. Hwang, B.-Y., Kim, Y.-H., Ro, J.-S., Lee, K.-S. and Lee, J.-J. 1999b. Acetophenones from the root of Cynanchum wilfordii Hemsley. Arch. Pharm. Res. 22: 72-74. https://doi.org/10.1007/BF02976439
  11. Jeon, M., Lee, K. M., Lim, Y.-H. and Kim, J. K. 2009. Rhapontigenin production by bioconversion and inhibition of melanin synthesis. Korean J. Microbiol. Biotechnol. 37: 49-54. (In Korean)
  12. Jung, J. S., Hah, Y. C. and Hong, S. W. 1983. Enzymatic property and action of $\beta$-glucosidase from Aspergillus nidulans FGSC 159. Korean Biochem. J. 16: 165−173. (In Korean)
  13. Kang, J. H., Uk, J. G., Jung, W. H. and Hwang, I. K. 2008. The transformation of saponin Platycodi Radix by Aspergillus niger and anti-oxidation evaluation of the transformed metabolites. Korean J. Food Cookery Sci. 24: 729−734. (In Korean)
  14. Kim, J. H. and Nam, D. H. 1984. Purification and properties of $\beta$- glucosidase from Sporotrichum cellulophilum. Korean J. Appl. Microbiol. Bioeng. 12: 21-26. (In Korean)
  15. Kim, J.-C., Choi, G. J., Park, J.-H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57: 554-559. https://doi.org/10.1002/ps.318
  16. Kim, M. J., Kim, I. J., Nam, S. Y., Lee, C. H. and Song, B. H. 2002. Effects of sowing method and planting density on growth and root yield of Cynanchum wilfordii Hemsly. Korean J. Crop Sci. 47: 418-421.
  17. Kim, M. S., Baek, J. H., Park, J. A., Hwang, B. Y., Kim, S. E., Lee, J. J. and Kim, K. W. 2005. Wilfoside K1N isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion. Intl. J. Oncol. 26: 1533-1539.
  18. Lee, D. U., Shin, U. S. and Huh, K. 1996. Inhibitory effects of gagaminine, a steroidal alkaloid from Cynanchum wilfordii, on lipid peroxidation and aldehyde oxidase activity. Planta Med. 62: 485-487. https://doi.org/10.1055/s-2006-957953
  19. Lee, D.-U., Shin, U.-S. and Huh, K. 1996. Inhibitory effects of gagaminine, a steroidal alkaloid from Cynanchum wilfordii on lipid peroxidation and aldehyde oxidase activity. Planta Med. 62: 485-487. https://doi.org/10.1055/s-2006-957953
  20. Lee, M. K., Yeo, H. S., Kim, J. W., Markelonis, G. J., Oh, T. H. and Kim, Y. C. 2000. Cynandione A from Cynanchum wilfordii protects cultured cortical neurons from toxicity induced by $H_{2}O_{2}$, L-Glutamate, and Kainate. J. Neurosci. Res. 5: 259-264.
  21. Lin, C. N., Huang, P. L., Lu, C. M., Yen, M. M. and Wu, R. R. 1997. Revised structure for five acetophenones from Cynanchum taiwanianum Phytochem. 44: 1359-1363. https://doi.org/10.1016/S0031-9422(96)00695-4
  22. Mitsuhashi, H., Sakurai, K. and Nomura, T. 1966. Constituents of Asclepiaclaceae plants. Chem. Pharm. Bull. 14: 712-717. https://doi.org/10.1248/cpb.14.712
  23. Park, S.-H., Yang, J.-E., Shin, H.-S. and Lee, J. M. 2012. Effects of ginsenoside enriched in compound K by biotransformation on HHDPC and HaCaT cell growth. J. Invest. Cosmetol. 8: 99-106. (In Korean) https://doi.org/10.15810/jic.2012.8.2.004
  24. Sung, C. K., Lee, S. W., Park, S. K., Park, J. R. and Moon, I. S. 1997. Purification and characterization of $\beta$-glucosidase from Aspergillus niger SFN-416. Korean J. Appl. Microbiol. Biotechnol. 25: 44-50. (In Korean)
  25. Tsukamoto, S., Hayashi, K. and Mitsuhashi, H. 1985a. Studies on the constituents of Asclepiadaceae plants. LX: Further studies on glycosides with a novel sugar chain containing a pair of optically siomeric sugars, D- and L-cymarose, from Cynanchum wilfordii. Chem. Pharmaceut. Bulletin. 33: 2294-2304. https://doi.org/10.1248/cpb.33.2294
  26. Tsukamoto, S., Hayashi, K. and Mitsuhashi, H. 1985b. Studies on the constituents of Asclepiadaceae plant-L VII: The structures of six glycosides, wilforside C1N, C2N, C3N, C1G, C2G and C3G, with novel sugar chain containing a pair of optically isomeric sugars. Tetrahedron 41: 927-934. https://doi.org/10.1016/S0040-4020(01)96411-7
  27. Yeo, H. S. and Kim, J. W. 1999. A benzoquinone from Cynanchum wilfordii. Phytochem. 46: 1103-1105.
  28. Yeo, N. I., Lee, S. K. and Ji, G. E. 1993. Characterization of agalactosidase from Bifidobacterium sp. Int-57. Korean J. Food Sci. Technol. 25: 689-693. (In Korean)
  29. Yoon, M.-Y., Choi, N. H., Min, B., Choi, G. J., Choi, Y. H., Jang, K. S., Han, S.-S., Cha, B. and Kim, J.-C. 2011. Potent in vivo antifungal activity against powdery mildews of prognane glycosides from the roots of Cyncnchum wilfordii. J. Agric. Food Chem. 59: 12210-12216. https://doi.org/10.1021/jf2039185