DOI QR코드

DOI QR Code

Numerical Study on 300 MW Shell-Type One-Stage Entrained Flow Bed Gasifier : Effect of Coal·Biomass Blending Ratio on CO2 Gasification

300MW급 Shell형 1단 분류층 가스화기 성능에 대한 전산수치해석 : 석탄·바이오매스 혼합비에 따른 CO2 가스화 반응

  • Received : 2012.04.03
  • Accepted : 2012.06.22
  • Published : 2012.06.30

Abstract

Recently, gasification technology for coal blended with biomass has been an issue. Especially, An advantages of coal blended with biomass are 1) obtaining high cold gas efficiency, 2) obtaining syn-gas of high-high heating value (HHV), and 3) controlling occurrence of $CO_2$. In this study, the efficiency and characteristic of 300 MW Shell type gasifier were predicted using CFD simulation. The CFD simulation was performed for biomass coal blending ratios of 0~0.2, 0.5, 1 and $O_2$/fuel ratios of 0.5~0.84. Kinetic parameters (A, $E_a$) obtained by $CO_2$ gasification experiment were used as inputs for the simulation. In results of CFD simulation, residence times of particle in 300MW Shell type gasifer presented as 7.39 sec ~ 13.65 sec. Temperature of exit increased with $O_2$/fuel ratio as 1400 K ~ 2800 K, while there is not an effects of biomass coal blending ratios. Considering both aspects of temperature for causing wall slagging and high cold gas efficiency, the optimal $O_2$/fuel ratio and blending ratio were found to be 0.585 and 0.05, respectively.

Keywords

References

  1. A. J. Minchener, "Coal gasification for advanced power generation", Fuel, Vol. 84, 2005, pp. 2222- 2235. https://doi.org/10.1016/j.fuel.2005.08.035
  2. G. J. Stiegel, and R. C. Maxwell, "Gasification technologies: the path to clean, affordable energy in the 21st century", Fuel Processing Technology, Vol. 71, 2001, pp. 79-97. https://doi.org/10.1016/S0378-3820(01)00138-2
  3. L. D. Smooth, and P. J. Smith, "Coal combustion and gasification", Plenum Press, 1985, pp. 163-210.
  4. R. Hotchkiss, "Coal gasification technologies", Journal of Power and Energy, Vol. 217, 2003, pp. 27-33. https://doi.org/10.1243/095765003321148664
  5. Y. G. Pan, E. Velo, X. Roca, J. J. Manyà, and L. Puigjaner, "Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production", Fuel, Vol. 79, 2000, pp. 1317-1326. https://doi.org/10.1016/S0016-2361(99)00258-6
  6. E. Henry A. Long, and T. Wang, "Case studies for biomass/coal co-gasification in IGCC applications", Proceedings of ASME Turbo Expo (Vancouver, Canada), 2011, pp. 1-15.
  7. T. R. McLendon, A. P. Lui, R. L. Pineault, S. K. Beer, and S. W. Richardson, "High- pressure co-gasification of coal and biomass in a fluidized bed", Biomass and Bioenergy, Vol. 26, 2004 pp. 377-388. https://doi.org/10.1016/j.biombioe.2003.08.003
  8. F. Pinto, C. Franco, R. Neto André, C. Tavares, M. Dias, I. Gulyurtlu, and I. Cabrita, "Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system", Fuel, Vol. 82, 2003, pp. 1967-1976. https://doi.org/10.1016/S0016-2361(03)00160-1
  9. F. Pinto, C. Franco, R. Neto André, C. Tavares, M. Dias, I. Gulyurtlu, and I. Cabrita, "Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system", Fuel, Vol. 82, 2003, pp. 1967-1976. https://doi.org/10.1016/S0016-2361(03)00160-1
  10. S. Kajitani, Y. Zhang, S. Umemoto, M. Ashizawa and S. Hara, "Co-gasification Reactivity of Coal and Woody Biomass in High-Temperature Gasification", Energy & Fuels, Vol. 24, 2010, pp. 145-151. https://doi.org/10.1021/ef900526h
  11. A. G. Collot, Y. Zhoo, D. R. Dugwell, and I. Kandiyoti, "Copyrolysis and co-gasification of coal and biomass in bench-scale fixed bed and fluidised bed reactors", Fuel, Vol. 78, 1999, pp. 667-679. https://doi.org/10.1016/S0016-2361(98)00202-6
  12. K. Li, R. Zhang, and J. Bi, "Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed", International Journal of Hydrogen Energy, Vol. 35, 2010, pp. 2722-2726. https://doi.org/10.1016/j.ijhydene.2009.04.046
  13. K. Kumabe, T. Hanaoka, S. Fujimoto, T. Minowa, and K. Sakanishi, "Co-gasification of woody biomass and coal with air and steam", Fuel, Vol. 86, 2007, pp. 684-689. https://doi.org/10.1016/j.fuel.2006.08.026
  14. J. Fermoso, B. Arias, M. G. Plaza, C. Pevida, F. Rubiera, J. J. Pis, F. García-Peña, and P. Casero, "High-pressure co-gasification of coal with biomass and petroleum coke", Fuel Processing Technology, Vol. 90, 2009, pp. 926-932. https://doi.org/10.1016/j.fuproc.2009.02.006
  15. D. F. Fletcher, B. S. Hynes, F. C. Christo, and S. D. Joseph, "A CFD based combustion model of an entrained flow biomass gasifier", Applied Mathmetical Modeling, Vol. 24, 2000, pp. 165-182. https://doi.org/10.1016/S0307-904X(99)00025-6
  16. J. H. Song, M. W. Kang, D. K. Seo, S. J. Lim, M. S. Paek, and J. H. Hwang "CFD modeling for 300MW Shell type one-state entrained flow coal gasifier : effect of $O_{2}$/steam/coal ratios, coal particle sizes, and inlet angles on the gasifer performance", The Korean Hydrogen & Energy Society, Vol. 21, 2010, pp. 227-240.
  17. J. W. Hong, S. S. Park, and J. H. Song, "Numerical study on one-stage entrained flow gasifier applied with coal/biomass co-gasification", 43th The Korean Society of Combustion symposium, 2011, pp. 443-446.
  18. Y. Wu, J. Zhang, P. J. Smith, H. Zhang, C. Reid, J. Lv, and G. Yue, "Three-Dimensional Simulation for an Entrained Flow Coal Slurry Gasifier", Energy & Fules, Vol. 24, 2010, pp. 1156-1163. https://doi.org/10.1021/ef901085b
  19. J. W. Hong, H. J. Jeong, J. H. Song, and J. Hwang "Numerical study on the 300 MW Shell-type one-stage entrained flow coal gasifier apllied with 4-layer slagging model", The Korean Hydrogen & Energy Society, Vol. 17, 2012, pp. 1-11.
  20. J. H. Song, "Numerical study on the entrained flow coal gasifier with coal/biomass mixed fuel", Yonsei Univ., M.S thesis, 2010, Korea.
  21. D. K. Seo, "Study on co-pyrolysis and $CO_{2}$ char co-gaisification of coal and biomass", Yonsei Univ., Ph. D thesis, 2011, Korea.
  22. J. G. Lee, J. H. Kim, H. J. Lee, T. J. Park, and S. D. Kim, "Characteristics of entrained flow coal gasification in a drop tube reactor", Fuel, Vol. 75, 1970, pp. 1035-1042.
  23. G. Shu-cai, and K. Hedden, "Entrained bed gasification of chinese lignites", Erdoel und Kohle, Erdgas, Petrochemie vereinigt mit Brennstoff- Chemie, Vol. 35, 1982, pp. 329-332
  24. S. Kajitani, S. Hara, and H. Matsuda, "Gasification rate analysis of coal char with a pressurized drop tube furnace", Fuel Vol. 81, 2002, pp. 539-546. https://doi.org/10.1016/S0016-2361(01)00149-1
  25. D. H. Ahn, B. M. Gibbs, K. H. Ko, and J. J. Kim, "Gasification kinetics of an Indonesian subbituminous coal-char with CO2 at elevated pressure", Fuel Vol. 80, 2001, pp. 1651-1658. https://doi.org/10.1016/S0016-2361(01)00024-2
  26. http://w3.wtb.tue.nl/fileadmin/wtb/ct-pdfs/Energy_from_Biomass/Lecture_2011_gastcollege_Shell.pdf
  27. S. R. Turns, "An introduction to combustion 2nd edition", McGraw-Hill, 2006.
  28. L. Elliott, S. M. Wang, T. Wall, F. Novak, J. Lucas, H. Hurst, J. Patterson, and J. Happ, "Dissolution of lime into synthetic coal ash slags", Fuel Processing Technology, Vol. 56, 1998, pp. 45-53. https://doi.org/10.1016/S0378-3820(97)00083-0

Cited by

  1. 3-D CFD Modeling for Parametric Study in a 300-MWe One-Stage Oxygen-Blown Entrained-Bed Coal Gasifier vol.8, pp.5, 2015, https://doi.org/10.3390/en8054216