DOI QR코드

DOI QR Code

Assessment of Drought Severity over South Korea using Standardized Precipitation Evapo-transpiration Index (SPEI)

표준강수 증발산지수(SPEI)를 이용한 남한지역의 가뭄심도 평가

  • Kim, Byung-Sik (Kangwon National University, Department of Urban & Environmental Disaster Prevention, School of Disaster Prevention) ;
  • Sung, Jang-Hyun (Yeongsan River Flood Control Office, Ministry of Land, Transport and Maritime Affairs) ;
  • Kang, Hyun-Suk (National Institute of Meteorological Research, Korea Meteorological Administration (NIMR/KMA)) ;
  • Cho, Chun-Ho (National Institute of Meteorological Research, Korea Meteorological Administration (NIMR/KMA))
  • 김병식 (국립강원대학교 방재전문대학원 도시환경방재전공) ;
  • 성장현 (국토해양부 영산강홍수통제소 예보동제과) ;
  • 강현석 (국립기상연구소 기후연구과) ;
  • 조천호 (국립기상연구소 기후연구과)
  • Received : 2012.05.22
  • Accepted : 2012.06.14
  • Published : 2012.09.30

Abstract

Drought is a non-negligible disaster of nature and it is mainly caused by rainfall shortage for a long time though there are many definitions of drought. 'Standard Precipitation Index' (SPI) that is widely used to express the level of meteorological drought intensity has a limit of not being able to consider the hydrological changes such as rainfall and evapotranspiration caused by climate change, because it does not consider the temperature-related variables other than the precipitation. Recently, however, 'Standardized Precipitation Evapotranspiration Index' (SPEI), a drought index of new concept which is similar to SPI but can reflect the effect of temperature variability as well as the rainfall change caused by climate variation, was developed. In this study, the changes of drought occurrence in South Korea were analyzed by applying SPEI for meteorological data (1973~2011) of 60 climate observatories under Korea Meteorological Administration (KMA). As the result of application, both of SPI and SPEI showed the trend of deepening drought in spring and winter and mitigating drought in summer for the entire nation, with SPI showing greater drought intensity than SPI. Also, SPI and SPEI with 12 months of duration showed that severe droughts with low frequency of around 6 years are generally being repeated.

가뭄은 자연의 무시할 수 없는 재해이며, 비록 가뭄의 정의가 많이 있지만 가뭄은 장기간의 강우의 부족으로부터 기인한다. 기상학적 가뭄심도의 정도를 표현하기 위해 널리 이용되는 표준강수지수(Standardized Precipitation Index, SPI)는 강수 이외의 기온과 관련된 변수를 고려하지 않기 때문에 기후변동으로 인한 강수, 증발산 등의 물수지 변화를 고려할 수 없다는 한계점이 있다. 그러나 최근에 SPI와 유사하지만 기후변동으로 인한 강수 변화 뿐만 아니라 기온의 변동성이 미치는 영향을 반영할 수 있는 새로운 개념의 가뭄지수인 표준강수증발산지수(Standardized Precipitation Evapotranspiration Index, SPEI)가 개발되었다. 본 연구에서는 기상청 산하의 60개 기상관측소의 1973~2011년까지 기상자료를 대상으로 SPEI를 적용하여 남한지역의 가뭄발생의 변화를 평가하였다. 적용결과, 전국적으로 SPI와 SPEI 모두 봄과 겨울에 가뭄이 심화되고 여름철에는 가뭄이 완화되는 경향을 보였으며, SPEI는 SPI보다 가뭄심도를 크게 나타내었다. 또한, 지속기간 12개월의 SPI와 SPEI는 전반적으로 6년 내외의 저빈도 주기성을 갖는 극심한 가뭄이 반복되고 있음을 보였다.

Keywords

References

  1. 건설교통부 (2001). 가뭄기록조사 보고서.
  2. 건설교통부, 한국수자원공사(2005). 가뭄관리모니터링체계 수립보고서.
  3. 김병식, 권현한, 김형수 (2011). "기후변화가 가뭄 위험성에 미치는 영향 평가." 한국습지학회 논문집, 한국습지학회, 13권, 제1호, pp. 1-11.
  4. 농업기반공사 (2001). 가뭄극복지.
  5. 이승호, 이현영 (2002). 기후학의 기초.
  6. 이주헌, 서지원, 김창주(2012). "가뭄지수를 활용한 한반도 가뭄의 경향성, 주기성 및 발생빈도 분석." 한국수자원학회 논문집, 한국수자원학회, 제45권, 제1회, pp. 75-89. https://doi.org/10.3741/JKWRA.2012.45.1.75
  7. 한국환경정책평가연구원 (2011). 수자원 현황 및 영향요인: 기후변화를 중심으로.
  8. Abramopoulos, F., Rosenzweig, C., and Choudhury, B. (1988). "Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration." Journal of Climate, Vol. 1, No. 9, pp. 921-941. https://doi.org/10.1175/1520-0442(1988)001<0921:IGHCFG>2.0.CO;2
  9. Dubrovsky, M., Svoboda, M.D., Trnka, M., Hayes, M. J., Wilhite, D.A., Zalud, Z., and Hlavinka, P. (2008). "Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia." Theoretical and Applied Climatology, Vol. 96, No. 1-2, pp. 155-171.
  10. Du Pisani, C.G., Fouché, H.J., and Venter, J.C. (1998). "Assessing rangeland drought in South Africa." Agricultural Systems, Vol. 57, No. 3, pp. 367-380. https://doi.org/10.1016/S0308-521X(98)00024-9
  11. Guttman, N.B. (1998). "Comparing the Palmer drought index and the Standardized Precipitation Index." Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 113-121. https://doi.org/10.1111/j.1752-1688.1998.tb05964.x
  12. Heim, R.R. (2002). "A review of twentieth-century drought indices used in the United States." Bulletin of the American Meteorological Society, Vol. 83, No. 8, pp. 1149-1165. https://doi.org/10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2
  13. Hu, Q., and Willson, G.D. (2000). "Effect of temperature anomalies on the Palmer drought severity index in the central United States." International Journal of Climatology, Vol. 20, pp. 1899-1911. https://doi.org/10.1002/1097-0088(200012)20:15<1899::AID-JOC588>3.0.CO;2-M
  14. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996.
  15. Jones, P.D., and Moberg, A. (2003). "Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001." Journal of Climate, Vol. 16, No. 2, pp. 206-223. https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2
  16. Kempes, C.P., Myers, O.B., Breshears, D.D., and Ebersole, J.J. (2008). "Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data." Journal of Arid Environments, Vol. 72, No. 4, pp. 350-357. https://doi.org/10.1016/j.jaridenv.2007.07.009
  17. Keyantash, J., and Dracup, J. (2002). "The quantification of drought: an evaluation of drought indices." Bulletin of the American Meteorological Society, Vol. 83, No. 8, pp. 1167-1180. https://doi.org/10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2
  18. Mavromatis, T. (2007). "Drought index evaluation for assessing future wheat production in Greece." International Journal of Climatology, Vol. 27, No. 7, pp. 911-924. https://doi.org/10.1002/joc.1444
  19. McKee, T.B., Doeskin, N.J., and Kleist, J. (1993). "The Relationship of drought frequency and duration to time scales. Proc. 8th Conf. on Applied Climatology, January 17-22, 1993, American Meteorological Society." Boston, Massachusetts, pp. 179-184.
  20. Palmer, W.C. (1965). Meteorological drought, Research paper, No. 45, U.S. Weather Bureau.
  21. Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J.P., and Menzel, A. (2006). "Heat and drought 2003 in Europe: A climate synthesis." Annals of Forest Science, Vol. 63, No. 6, pp. 569-577. https://doi.org/10.1051/forest:2006043
  22. Shafer, B.A., and Dezman, L.E. (1982). Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas, Proceedings of the Western Snow Conference, Reno, NV, pp. 164-175.
  23. Sheffield, J., and Wood, E.F. (2008). "Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations." Climate Dynamics, Vol. 31, No. 1, pp. 79-105. https://doi.org/10.1007/s00382-007-0340-z
  24. Thornthwaite, C.W. (1948). "An approach toward a rational classification of climate." Geographical Review, Vol. 38, No. 1, pp. 55-94. https://doi.org/10.2307/210739
  25. Thornthwaite, C.W., and Mather, J.R. (1955). "The water balance." Publications in Climatology, Vol. 8, No. 1, pp. 1-104.
  26. Vicente-Serrano, S.M., and Santiago Begueria Juan I. Lopez- Moreno (2010). "A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index-SPEI." Journal of Climate, Vol. 23, No. 7, pp. 1696-1718. https://doi.org/10.1175/2009JCLI2909.1

Cited by

  1. Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea vol.57, pp.1, 2015, https://doi.org/10.5389/KSAE.2015.57.1.037
  2. Climate Change Impacts on Agricultural Drought for Major Upland Crops using Soil Moisture Model -Focused on the Jeollanam-do- vol.57, pp.3, 2015, https://doi.org/10.5389/KSAE.2015.57.3.065
  3. Analyzing the drought event in 2015 through statistical drought frequency analysis vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.177
  4. Appraisal of drought characteristics of representative drought indices using meteorological variables 2017, https://doi.org/10.1007/s12205-017-1744-x
  5. Evaluation on the Impact of Extreme Droughts in South Korea using the SPEI and RCP8.5 Climate Change Scenario vol.13, pp.2, 2013, https://doi.org/10.9798/KOSHAM.2013.13.2.097
  6. Application of Streamflow Drought Index using Threshold Level Method vol.47, pp.5, 2014, https://doi.org/10.3741/JKWRA.2014.47.5.491
  7. Development and Assessment of Drought Damage Estimation Technique using Drought Characteristic Factors vol.15, pp.2, 2015, https://doi.org/10.9798/KOSHAM.2015.15.2.93
  8. Structural dynamics in the host-parasitoid system of the pine needle gall midge (Thecodiplosis japonensis) during invasion vol.5, 2017, https://doi.org/10.7717/peerj.3610
  9. Change Projection of Extreme Indices using RCP Climate Change Scenario vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1089
  10. Comparison of Meteorological Drought and Hydrological Drought Index vol.48, pp.1, 2015, https://doi.org/10.3741/JKWRA.2015.48.1.69
  11. Assessment of Meteorological Drought Indices in Korea Using RCP 8.5 Scenario vol.10, pp.3, 2018, https://doi.org/10.3390/w10030283
  12. Analysis of Drought Intensity and Trends Using the Modified SPEI in South Korea from 1981 to 2010 vol.10, pp.3, 2018, https://doi.org/10.3390/w10030327
  13. Statistical Analysis of Changes in Reservoir Storage According to Standard Precipitation Evapotranspiration Index (SPEI) and Dam Water Release vol.18, pp.2, 2018, https://doi.org/10.9798/KOSHAM.2018.18.2.409