DOI QR코드

DOI QR Code

Effects of Imperfect Sinusoidal Input Currents on the Performance of a Boost PFC Pre-Regulator

  • Cheung, Martin K.H. (Infineon Technologies Hong Kong Limited, PMM High Power Application Center) ;
  • Chow, Martin H.L. (Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University) ;
  • Lai, Y.M. (Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University) ;
  • Loo, K.H. (Faculty of Engineering, The Hong Kong Polytechnic University)
  • Received : 2011.12.12
  • Published : 2012.09.20

Abstract

This paper investigates the effects of applying different input current waveshapes on the performance of a continuous-conduction-mode (CCM) power-factor-correction (PFC) boost pre-regulator. It is found that the output voltage ripple of the pre-regulator can be reduced if the input current is modified to include controlled amount of higher order harmonics. This finding allows us to balance the performance of output regulation and the harmonic current emission when coming to the design of the pre-regulator. An experimental PFC boost pre-regulator prototype is constructed to verify the analysis and show the benefit of the pre-regulator operating with input current containing higher order harmonics.

Keywords

References

  1. P. C. Todd, "UC3854 controlled power factor correction circuit design," Application Note U-134, Unitrode-Texas Instruments.
  2. "ML4824 power factor correction and PWM controller combo," Data Sheet, Fairchild Semiconductor Corporation.
  3. B. Singh, B. N. Singh, A. Chandra, K. A. Haddad, A. Pandey, and D. P. Kothari, "A review of single-phase improved power quality ac-dc converters," IEEE Trans. Ind. Electron., Vol. 50, No. 5, pp. 962-981, Oct. 2003. https://doi.org/10.1109/TIE.2003.817609
  4. W. Y. Choi, J. M. Kwon, and B. H. Kwon, "High-performance frontend rectifier system for telecommunication power supplies," IET Electric Power Applications, Vol. 153, No. 4, pp. 473-482, Jul. 2006. https://doi.org/10.1049/ip-epa:20050257
  5. J. J. Lee and B. H. Kwon, "High-performance light emitting diode backlight driving system for large-screen liquid crystal display," IET Electric Power Applications, Vol. 1, No. 6, pp. 946-955, Nov. 2007. https://doi.org/10.1049/iet-epa:20060509
  6. C. K. Tse, "Circuit theory of power factor correction in switching converters," Int. J. Circuit Theory and Applications, Vol. 31, No. 2, pp. 157-198, Mar. 2003. https://doi.org/10.1002/cta.216
  7. A. Fernández, J. Sebastián, P. Villegas, M. M. Hernando, and D. G. Lamar, "Dynamic limits of a power-factor preregulator," IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 77-87, Feb. 2005. https://doi.org/10.1109/TIE.2004.841136
  8. R. Erickson, M. Madigan, and S. Singer, "Design of a simple high-power factor rectifier based on the flyback converter," in Proc. IEEE APEC, pp. 792-801, 1990.
  9. D. G. Lamar, A. Fernández, M. Arias, M. Rodríguez, J. Sebastián, and M. M. Hernando, "Limitations of the flyback power factor corrector as a one-stage power supply," in IEEE PESC Record, pp. 1343-1348, 2007.
  10. European Standard EN 61000-3-2 Ed. 3:2005. Electromagnetic Compatibility (EMC), Part 3. Section 2.
  11. A. Fernández, J. Sebastián, M. M. Hernando, P. Villegas, and J. García, "Helpful hints to select a power-factor-correction solution for low- and medium-power single-phase power supplies," IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 46-55, Feb. 2005. https://doi.org/10.1109/TIE.2004.841141
  12. O. García, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, "Single Phase Power Factor Correction: A Survey," IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 749-755, May 2003. https://doi.org/10.1109/TPEL.2003.810856
  13. P. T. Krein, "Current quality and performance tradeoffs under active power factor correction," in Proc. IEEE Workshop on Computer in Power Electronics, pp. 97-101, 2004.
  14. Y. Chen, J. W. Kimball, and P. T. Krein, "Non-unity active pfc methods for filiter size optimization," in Proc. IEEE APEC, pp. 268-272, 2006.
  15. L. Gu, X. Ruan, M. Xu, and K. Yao, "Means of eliminating electrolytic capacitor in ac-dc power supplies for LED lightings," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1399-1408, May 2009. https://doi.org/10.1109/TPEL.2009.2016662
  16. S. C. Wong, C. K. Tse, M. Orabi, and T. Ninomiya, "The method of double averaging: an approach for modeling power-fcator-correction switching converters," IEEE Trans. Circ. Syst. I, Vol. 53, No. 2, pp. 454-462, Feb. 2006. https://doi.org/10.1109/TCSI.2005.855744
  17. J. P. Gegner, C. Y. Hung, and C. Q. Lee, "High power factor ac-to-dc converter using a reactive shunt regulator," in IEEE PESC Record, pp. 349-355, 1994.
  18. J. P. Gegner, "High power factor ac-dc converter with reactive shunt regulation," United States Patent, Number 5404092, Apr. 4, 1995.
  19. M. K. H. Cheung, M. H. L. Chow, and C. K. Tse, "Practical design and evaluation of a 1 kW PFC power supply based on reduced redundant power processing principle," IEEE Trans. Ind. Electron., Vol. 55, No. 2, 665-673, Feb. 2008. https://doi.org/10.1109/TIE.2007.909078
  20. P. Kokotovi'c, H. K. Khalil, and J. O. Reilly, Singular Perturbation Methods in Control: Analysis and Design, London: Academic Press, 1986.
  21. R. P. Severns and G. E. Bloom, Modern dc-to-dc Switchmode Power Converter Circuits, New York: Van Nostrand Reinhold, 1985.
  22. S. Wall and R. Jackson, "Fast controller design for single-phase power factor correction systems," IEEE Trans. Ind. Electron., Vol. 44, No. 5, pp. 654-660, Oct. 1997. https://doi.org/10.1109/41.633465
  23. R. B. Ridley, "Average small-signal analysis of the boost power factor correction circuit," in Proc. Virginia Power Electronics Center Seminar, pp. 108-120, 1989.
  24. D. K. Jackson, A. M. Schultz, S. B. Leeb, A. H. Mitwalli, G. C. Verghese, and S. R. Shaw, "A multirate digital controller for a 1.5-kW electric vehicle battery charger," IEEE Trans. Power Electron., Vol. 12, No. 6, pp. 1000-1006, Nov. 1997. https://doi.org/10.1109/63.641498
  25. M. M. Morcos, C. R. Mersman, G. D. Sugavanam, and N. G. Dillman, "Battery chargers for electric vehicles," IEEE Power Engineering Review, Vol. 20, No. 11, pp. 8-11, 18, Nov. 2000. https://doi.org/10.1109/39.883280

Cited by

  1. Analysis, Design, and Implementation of a High-Performance Rectifier vol.16, pp.3, 2016, https://doi.org/10.6113/JPE.2016.16.3.905