DOI QR코드

DOI QR Code

Physiological and Structural Damages in Acorus calamus var. angustatus as Native Aquatic Plants to Cadmium

카드뮴에 의한 수생식물 창포의 생리적·구조적 장해

  • Lee, Sung-Chun (Natural Science Research Institute, The University of Seoul) ;
  • Kim, Wan-Soon (Natural Science Research Institute, The University of Seoul)
  • 이성춘 (서울시립대학교 자연과학연구소) ;
  • 김완순 (서울시립대학교 자연과학연구소)
  • Received : 2012.01.25
  • Accepted : 2012.06.01
  • Published : 2012.08.30

Abstract

This study was conducted to investigate the physiological and structural damages to cadmium (Cd) in Acorus calamus var. angustatus as a native aquatic species in Korea. In addition to the physiological responses such as plant growth, photosynthesis, and root activity, the structural damages in leaf and root tissues were observed through light and scanning electronic microscopy. The five-leaf plants were treated with different Cd concentrations 0, 10, 25, and 50 ${\mu}M$ for 15 days. The plant damages to Cd were significant at 10-25 ${\mu}M$ Cd physiologically and at 25-50 ${\mu}M$ Cd structurally. The physiological damages in the shoot part (photosynthesis) started at 10 ${\mu}M$ Cd whereas those in root part (root activity) were serious above 25 ${\mu}M$ Cd. On the other hand, the structural damages began at 25 ${\mu}M$ Cd in the leaf and root tissues similarly, but the plant tissue destruction was more serious in the roots than in leaves. Based on the plant physiological and structural damages, 10 ${\mu}M$ was assumed to be the limited concentration for sustainable growth and landscaping ability in Acorus calamus var. angustatus to Cd.

국내 자생 수생식물인 창포의 중금속 카드뮴(Cd)에 대한 생리적 구조적 장해를 알아보고자 본 연구를 실시하였다. Cd 농도에 따른 생장률, 광합성, 뿌리활력의 생리적 반응과 잎과 뿌리 조직의 해부학적 상해 반응을 조사하였다. 잎이 5매 전개된 식물체를 대상으로 Cd 농도를 반치사농도 범위이하 조건에서 0(control), 10, 25, $50{\mu}M$로 15일간 처리하였다. Cd에 대한 생리적 장해는 $10-25{\mu}M$, 구조적 상해는 $25-50{\mu}M$ 범위에서 나타났다. 생리적 장해의 경우 지상부(광합성)는 $10{\mu}M$, 지하부(뿌리활력)는 $25{\mu}M$에서 발생하였다. 구조적 상해의 경우 지상부(엽육조직)와 지하부(뿌리조직) 모두 $25{\mu}M$에서 시작되었으나, Cd 농도가 증가할수록 엽육조직보다는 뿌리조직의 상해 정도가 현저하였다. Cd에 대한 창포의 생리적, 구조적 장해 반응을 고려할 때, Cd 오염지역에서 창포의 경관적 가치와 지속적인 생장을 유지할 수 있는 Cd 한계농도는 $10{\mu}M$ 정도인 것으로 확인되었다.

Keywords

References

  1. Aslan, M., M.Y. Unlu1, N. Turkmen, and Y.Z. Ylmaz. 2003. Sorption of cadmium and effects on growth, protein content, and photosynthetic pigment composition of Nasturtium officinale R. Br. and Mentha aquatica L. Bul. Environ. Contamination Toxicology 71:323-329. https://doi.org/10.1007/s00128-003-0167-1
  2. Barcelo, J., M.D. Vázquez, and C. Poschenrieder. 1998. Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Phytol. 108:37-49.
  3. Calabrese, E.J. 1999. Evidence that hormesis represents an overcompensation response to a disruption in homeostasis. Ecotoxicology Environ. Safety 42:135-137. https://doi.org/10.1006/eesa.1998.1729
  4. Galiulin, R.V., V.N. Bashkin, R.R. Galiulina, and P. Birch. 2001. A critical review: Protection from pollution by heavy metalsphytoremediation of industrial wastewater. Land Contamination Reclamation 9:349-358.
  5. Huxley, A., M. Griffiths, and M. Levy. 1992. The new royal horticultural society, dictionary of gardening. Vol. 2. Chittenden, London.
  6. Lagriffoul, A., B. Mocquot, M. Mench, and J. Vangronsveld. 1998. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200:241-250. https://doi.org/10.1023/A:1004346905592
  7. Lee, S.C. and W.S. Kim. 2011. Cadmium accumulation and tolerance of Iris pseudacorus and Acorus calamus as aquatic plants native to Korea. Kor. J. Hort. Sci. Technol. 29:413-419.
  8. Mengel, K. and E.A. Kirby. 1978. Principles of plant nutrition. 5th ed. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  9. Pankovic, D., M. Plesnicar, I. Arsenijevic-Marsimovic, N. Petrovic, Z. Sarac, and R. Kastori. 2000. Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Annal. Bot. 86:841-847. https://doi.org/10.1006/anbo.2000.1250
  10. Park, J.S., J.D. Shin, S.S. Han, and D.J. Yoon. 2002. Phytoremediation technology with using water celery (Oenanthe stolonifer DC.) to clean up heavy metals in the contaminated wastewater. Kor. Soc. Environ. Agr. 21:122-129. https://doi.org/10.5338/KJEA.2002.21.2.122
  11. Samardakiewicz, S. and A. Wo'zny. 2000. The distribution of lead in duckweed (Lemna minor L.) root tip. Plant Soil 226:107-111. https://doi.org/10.1023/A:1026440730839
  12. Sandalio, L.M., H.C. Dalurzo, M. Gómez, M.C. Romero-Puertas, and L.A. del Río. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52:2115-2126.
  13. Singh, S., S. Eapen, and S.F. D'Souza. 2006. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233-246. https://doi.org/10.1016/j.chemosphere.2005.05.017
  14. Shan, F.R., N. Ahmad, K.R. Masood, and D.M. Zahid. 2008. The influence of cadmium and chromium on the biomass production of shisham (Dalbergla sissoo Roxb.) seedlings. Pak. J. Bot. 40:1341-1348.
  15. Spangenberg, D.B. 1986. Statolith formation in Cnidaria: Effects of cadmium on Aurelia statoliths. Scanning Electron Microsc. 4:1609. (Abstr.)
  16. Vassilev, A. and I. Yordanov. 1997. Reductive analysis of factors limiting growth of cadmium-treated plants: A review. Bulg. J. Plant Physiol. 23:114-133.
  17. Vassilev, A., I. Yordanov, and T. Tsonev. 1997. Effects of $Cd^{2+}$ on the physiological state and photosynthetic activity of young barley plants. Photosynthetica 34:293-302. https://doi.org/10.1023/A:1006805010560
  18. Wang, X., Y. Liu, G. Zeng, L. Chai, X. Song, Z. Min, and X. Xiao. 2008. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Experimental Bot. 62:389-395. https://doi.org/10.1016/j.envexpbot.2007.10.014
  19. Zhou, Y.Q., S.Z. Huang, S.L. Yu, J.G. Gu., J.Z. Zhao, Y.L. Han, and J.J. Fu. 2010. The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicology 19:69-76. https://doi.org/10.1007/s10646-009-0389-z