DOI QR코드

DOI QR Code

Dietary Effects of Post-fermented Green Tea by Monascus pilosus on the Body Weight, Serum Lipid Profiles and the Activities of Hepatic Antioxidative Enzymes in Mouse Fed a High Fat Diet

Monascus pilosus로 발효시킨 후발효 녹차가 고지방 식이 마우스의 체중과 혈청 지방함량 및 간 조직 항산화계 효소활성에 미치는 영향

  • Lee, Sang-Il (Department of Food, Nutrition and Cookery, Keimyung College) ;
  • Lee, Ye-Kyung (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Kim, Soon-Dong (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Yang, Seung-Hwan (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Suh, Joo-Won (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University)
  • Received : 2012.01.14
  • Accepted : 2012.04.12
  • Published : 2012.06.30

Abstract

The anti-obese, hypolipidemic and hepatoprotective effects of post-fermented green tea by Monascus pilosus was tested with mice fed with high-fat diet for 7 weeks. The body weight gain and feed efficiency ratio (FER) in normal control group (NC), CHA (2% non-fermented green tea powder supplemented high-fat diet group) and mCHA (2% green tea powder post-fermented by M. pilosus supplemented high fat diet group) groups were significantly lower than those of high fat diet control group (HC). Epididymal fat weight in mCHA and NC were significantly lower than HC. The hepatic lipid peroxide was dramatically higher in HC than that of NC and was significantly lower in CHA and mCHA. In addition, dehydrogenase type activity of xanthine oxidoreductase in HC was lower than that of NC, but significantly higher than CHA and mCHA. In histopathological findings, hepatic fat accumulation in HC was higher than that of NC, CHA and mCHA. Antiobese, hypolipidemic and antifatty liver effect of green tea powder post-fermented by M. pilosus was slightly higher than that of non-fermented green tea. In conclusion, the constituents of green tea fermented by M. pilosus has been proven to not only inhibit obesity and hyperlipidemia but also decrease the hepatic fat accumulation in high fat diet-induced obese mice.

Monascus pilosus로 발효시킨 후 발효 녹차의 첨가식이가 고지방식이 ICR 마우스의 체중과 혈청 지방함량 및 간 조직 항산화계 효소활성에 미치는 영향을 조사하였다. 정상대조군(NC), 고지방식이대조군(HC), 비발효녹차 분말을 2% 첨가한 고지방식이군(CHA) 및 M. pilosus로 발효시킨 후발효녹차 분말을 2% 첨가한 고지방식이군(mCHA)으로 구분하여 7주간 사육하였다. 체중은 CHA군과 mCHA군간의 유의적인 차이가 없으나 HC군에 비하여 각각 24.15 및 29.66%가 감소되었으며 식이섭취량에는 차이가 없었다. 체중 당 간 및 신장의 중량은 CHA군 및 mCHA군이 HC군에 비해 증가하였다. 체중 당 부고환주위지방의 무게는 mCHA군에서 유의하게 감소하였다. 혈청 TG와 의총콜레스테롤 함량은 mCHA군에서 NC군 수준으로 감소하였다. CHA군과 mCHA군의 HDL-cholesterol 함량은 HC군에 비하여 96.55 및 119.32%가 높았다. CHA군과 mCHA군의 CHA군 및 mCHA군의 LDL-cholesterol 함량은 각각 0.67 및 0.41을 나타내었다. 간 조직의 GSH 함량은 HC군에 비하여 CHA군이 11.24%, mCHA군은 23.68%가 높았다. LPO 함량은 CHA군과 mCHA군이 HC군에 비하여 43.70 및 45.38%가 낮았다. CHA군과 mCHA군의 xanthine oxidoreductase D type 효소활성은 HC군에 비하여 각각 18.52 및 33.33%가 감소하였으며 mCHA군은 NC군 수준으로 높았다. XOD O type 효소활성은 CHA군과 mCHA군이 HC군에 비하여 각각 16.67 및 33.33%가 높았다. superoxide dismutase 활성은 CHA군과 mCHA군이 HC군에 비하여 유의차는 없었다. mCHA군의 glutathione S-transferase 활성은 HC군에 비하여 유의적으로 높았으며 특히, mCHA군의 glutathione peroxidase 활성은 HC군의 2.55배, CHA군의 1.5배로 높았으며 NC군과 대등하였다. CHA군과 mCHA군의 ALT 활성 HC군에 비하여 현저하게 낮았다. 간 조직의 현미경 관찰결과, CHA군과 mCHA군에서는 간 세포 내 축적된 지방의 크기가 작은 포말형으로 변화되고, 이로 인해 간 세포판과 동양혈관 형성이 간 소엽단위로 뚜렷하게 구분되었다. 이상의 실험결과로 보아 M. pilosus로 발효시킨 후발효 녹차는 고지방식이에 의해 유발되는 비만과 고지혈증 및 지방간을 예방 혹은 경감시켜줄 수 있는 유효한 가능성을 시사하였다.

Keywords

References

  1. Adams JD, Lauerberg BH, and Mitchell JR (1983) Plasma glutathione and glutathione disulfide in rat: Regulation and response to oxidative stress. J Pharmacol Exp Ther 227, 749-54.
  2. Arad Y, Ramakrishnan R, and Ginsberg HN (1990) Lovastatin therapy reduces low density lipoprotein apoB levels in subjects with combined hyperlipidemia by reducing the production of apoB-containing lipoproteins: Implications for the pathophysiology of apoB production. J Lipid Res 31, 567-82.
  3. Birch AJ, Cassera A, Fitton D, Holker JSE, Smith H, Tompson GA et al. (1962) Studies in relation to biosynthesis. Rotiorin, monascin and rubropunctatin. J Chem Soc 11, 3583-7.
  4. Bode AM and Dong Z (2003) Signal transduction pathwasy: Targets for green and black tea. J Biochem Mol Biol 36, 66-77. https://doi.org/10.5483/BMBRep.2003.36.1.066
  5. Chen YC, Liang YC, Lin-Shiau SY, Ho CT, and Lin JK (1999) Inhibition of TPA-induced protein kinase C and transcription activator protein-1 binding activities by theaflavin-3-3'-digallate from black tea in NIH3T3 cells. J Agric Food Chem 47, 1416-21. https://doi.org/10.1021/jf981099k
  6. Ellman GL (1959) Tissue sulfhydryl group. Arch Biochem Biophys 82, 70-7. https://doi.org/10.1016/0003-9861(59)90090-6
  7. Endo A (1980) Monacolin-K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiotics 33, 334-6. https://doi.org/10.7164/antibiotics.33.334
  8. Feng Q, Torii Y, Uchida K, Nakamura Y, Hara Y, and Osawa T (2002) Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 IAI in cell culture. J Agric Food Chem 50, 213-20. https://doi.org/10.1021/jf010875c
  9. Flohe L, Gunzler WA, and Schock HH (1973) Glutathione peroxidase: A selenoenzyme. FEBS Lett 32, 132-4. https://doi.org/10.1016/0014-5793(73)80755-0
  10. Franke WW, Denk H, Schmid E, Osborn M, and Weber K (1979) Ultrastructural, biochemical and immunological characterization of Mallory bodies in livers of griseofulvin-treated mice: Fimbriated rods of filaments containing prekeratin-like polypeptides. Lab Invest 40, 207-20.
  11. Friedewald WT, Levy RI, and Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18, 499-502.
  12. Gordon T, Kannel WB, Castelli WP, Thomase R, and Dawber TR (1981) Lipoproteins, cardiovascular disease, and death: The famingham study. Arch Intern Med 141, 1128-31. https://doi.org/10.1001/archinte.1981.00340090024008
  13. Grundmann E and Geller SA (1992) In Histopathology: Color Atlas of Organs and Systems, p. 105, Urban and Schwarzenberg, USA.
  14. Habig WH, Pabist MJ, and Jakoby WB (1974) Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249, 7130-9.
  15. Ham YK and Kim SW (2004) Protective effects of plant extract on the hepatocytes of rat treated with carbon tetrachloride. J Korean Soc Food Sci Nutr 33, 1246-51. https://doi.org/10.3746/jkfn.2004.33.8.1246
  16. Han SK, Song YS, Lee JS, Bang JK, Suh SJ, Choi JY et al. (2010) Changes of the chemical constituents and antioxidant activity during microbialfermented tea (Camellia sinensis L.) processing. Korean J Food Sci Technol 42, 21-6.
  17. Hashim MS, Lincy S, Remya V, Teena M, and Anila L (2005) Effect of polyphenolic compounds from Coriandrum sativum on $H_2O_2$-induced oxidative stress in human lymphocytes. Food Chem 92, 653-60. https://doi.org/10.1016/j.foodchem.2004.08.027
  18. Ha SK and Chae C (2010) Inducible nitric oxide distribution in the fatty liver of a mouse with high fat diet-induced obesity. Exp Anim 59, 595-604. https://doi.org/10.1538/expanim.59.595
  19. Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Liang V et al. (1999) Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Clim Nutr 69, 231-6. https://doi.org/10.1093/ajcn/69.2.231
  20. Im MJ, Manson PN, Bulkley GB, and Hoopes JE (1985) Effects of superoxide dismutase and allopurinol in survival of acute island skin flaps. Ann Surgery 201, 357-9. https://doi.org/10.1097/00000658-198503000-00018
  21. Jacoby JB (1978) The glutathione S-transferase. A group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol 46, 383-414.
  22. Kang MH, Lee JH, Lee JS, Kim JH, and Chung HK (2004) Effect of acorn supplementation on lipid profiles and antioxidant enzyme activities in high fat diet-induced obese rats. Korean Nutr Soc 37, 169-75.
  23. Kim DY (1989) The status and prospect of Korean green tea. Food Sci Ind 22, 2-12.
  24. Lee IS, Lee SW, and Lee IZ (2003) Effects of tissue cultured ginseng on blood glucose and lipid in streptozotocin-induced diabetic rats. Korean J Food Sci Technol 35, 280-5.
  25. Lee J, Jeong JY, Cho YS, Park SK, Kim KJ, Kim MJ et al. (2010) Effect of young Phragmites communis leaves powder on lipid metabolism and erythrocyte antioxidant enzyme activities in high-fat diet fed mice. J Korean Soc Food Sci Nutr 39, 677-83. https://doi.org/10.3746/jkfn.2010.39.5.677
  26. Lee JM, Cho WK, and Park HJ (1998) Effect of chitosan treated with enzymatic methods on glucose and lipid metabolism in rats. Korean J Nutr 31, 312-8.
  27. Lee SI, Kim JW, Lee YK, Yang SH, Lee IA, Suh JW et al. (2011a) Antiobesity effect of Monascus pilosus mycelial extract in high fat diet induced obese rats. Appl Biol Chem 54, 197-205. https://doi.org/10.3839/jabc.2011.033
  28. Lee SI, Kim JW, Lee YK, Yang SH, Lee IA, Suh JW et al. (2011b) Protective effect of Monascus pilosus mycelial extract on hepatic damage in highfat diet induced-obese rats. J Appl Biol Chem 54, 206-13. https://doi.org/10.3839/jabc.2011.034
  29. Lee SU (1984) In History of Korean Foods, p. 240. Gyomunsa, Korea.
  30. Liang YC, Chen YC, Lin YL, Lin-Shiau SY, Ho CT, and Lin JK (1999) Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,3'-digallate. Carcinogenesis 20, 733-6. https://doi.org/10.1093/carcin/20.4.733
  31. Lin YL, Tsai SH, Lin-Shiau SY, Ho CT, and Lin JK (1999) Theaflavin- 3,3'- digallate from black teea blocks the nitric oxide synthase by downregulating the activation of nf-kappab in macrophages. Eur J Pharmacol 367, 379-88. https://doi.org/10.1016/S0014-2999(98)00953-4
  32. Lowry OH, Rosebrough NJ, Farr AL, and Randall RL (1951) Protein measurement by folin phenol reagent. J Biol Chem 193, 265-75.
  33. Martin JP, Dailey JM, and Sugarmanand E (1987) Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 255, 329-36. https://doi.org/10.1016/0003-9861(87)90400-0
  34. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H et al. (2008) Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57, 1071-7. https://doi.org/10.1016/j.metabol.2008.03.010
  35. Oei HH, Kentroo WE, Burton KP, and Schaffer SW (1982) A possible role of xanthine oxidase in pproducing oxidative stress in the heart of chronically ethanol treated rats. Res Commun Chem Pathol Pharmacol 38, 453-61.
  36. Ohkawa H, Ohishi N, and Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95, 248-54.
  37. Pagila ED and Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70, 158-69.
  38. Park BH, Beck KY, Lee SI, and Kim SD (2006) Effect of chitosan-ascorbate containing soyfiber beni-koji on body weight and lipd content of obesity rats aid induced from high fat diet. J East Asian Soc Dietary Life 16, 663-9.
  39. Park GY, Lee SJ, and Lim JG (1997) Effects of green tea catechin on cytochrome p450, xanthine oxidase activities in liver and liver damage in streptozveocin induced diabetic rats. J Korean Soc Food Sci Nutr 26, 901-7.
  40. Popper H and Schaffner F (1992) In Progress in Liver Disease: Nonalcoholic Fatty Liver Disease, Schaffner F and Thaler H (eds.), vol. 8, pp. 283-98, Grune & Stratton, USA.
  41. Pyo YH and Lee TC (2007) The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascusfermented soybean extracts as multifunctional food additives. J Food Sci 72, 218-23. https://doi.org/10.1111/j.1750-3841.2007.00312.x
  42. Reitman S and Frankel S (1957) A colorimetric method for thedetermination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28, 56-63. https://doi.org/10.1093/ajcp/28.1.56
  43. Savransky V, Bevans S, Nanayakkara A, Li J, Smith PL, Torbenson MS et al. (2007) Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am J Physiol Gastrointest Liver Physiol 293, 871-7. https://doi.org/10.1152/ajpgi.00145.2007
  44. Song WY, Sung BH, Kang SK, and Choi JH (2010) Effect of water extracts from Phellinus linteus on lipid composition and antioxidative system in rats fed high fat high cholesterol diet. J Korean Soc Food Sci Nutr 39, 71-7. https://doi.org/10.3746/jkfn.2010.39.1.071
  45. Stripe F and Della Corte E (1969) The regulation of rat liver xanthine oxidase. J Biol Chem 244, 3855-60.
  46. Trevisanato SI and Kim YI (2000) Tea and health. Nutr Rev 58, 1-10.
  47. Urano S, Midori H, Tochihi N, Matsuo M, Shiraki M, and Ito H (1991) Vitamin E and the susceptibility of erythrocytes and reconstituted liposome to oxidative stress in aged diabetics. Lipids 26, 58-62. https://doi.org/10.1007/BF02544025
  48. Vladislav E, Dana K, and Monika B (2004) The effect of curcumin on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice. Toxicology Lett 151, 79-85. https://doi.org/10.1016/j.toxlet.2004.02.019
  49. Wang RS, Nakajima T, and Honma T (2000) Different change patterns of the isozymes of cytochrome P450 and glutathione S-ttterferase in chemically induced liver damage in rat. Ind Health 37, 440-8.
  50. Wilson JN, Wilson SP, and Eator RP (1984) Dietary fiber and lipoprotein metabolism in the genetically obese Zucker rat. Arteriosclerosis 4, 147- 53. https://doi.org/10.1161/01.ATV.4.2.147
  51. Wu YG, Xia LL, Lin H, Zhou D, Qian H, and Lin ST (2007) Prevention of early liver injury by breviscapine in streptozotocin-induced diabetic rats. Planta Med 73, 433-8. https://doi.org/10.1055/s-2007-967182
  52. Yang CS, Jung JY, Yang G, Chhabra SK, and Lee MJ (2000) Tea and tea polyphenols in cancer prevention. J Nutr 130, 472S-8S. https://doi.org/10.1093/jn/130.2.472S
  53. Yu MH, Lee HH, Im HG, Hwang Bo MH, Kim JH, and Lee IS (2005) The effects of kimchi with Monascus purpureus on the body weight gain and lipd metabolism in rats fed high fat diet. Life Sci 15, 536-41. https://doi.org/10.5352/JLS.2005.15.4.536
  54. Zhang ZL, Wen QZ, and Liu CX (1990) Hepatoprotective effects of Astraglus root. J Ethnopharmacol 30, 145-9. https://doi.org/10.1016/0378-8741(90)90003-C

Cited by

  1. Physicochemical Changes in Hemerocallis coreana Nakai After Blanching, Drying, and Fermentation vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1638
  2. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2016.1237978
  3. 제2형 당뇨 모델 KK-Ay 마우스에 대한 발효 녹차의 항당뇨 효과 vol.45, pp.4, 2012, https://doi.org/10.9721/kjfst.2013.45.4.488
  4. Effects of Young Barley Leaf Powder on Anti-obesity and Lipid Improvements in Rats Fed a High-fat Diet vol.30, pp.2, 2012, https://doi.org/10.7856/kjcls.2019.30.2.211
  5. Analysis of Microbial Metabolites of Fermented Tea prepared with Aspergillus sp. B3 vol.31, pp.2, 2012, https://doi.org/10.17495/easdl.2021.4.31.2.133
  6. Heukcha, naturally post‐fermented green tea extract, ameliorates diet‐induced hypercholesterolemia and NAFLD in hamster vol.86, pp.11, 2012, https://doi.org/10.1111/1750-3841.15929