DOI QR코드

DOI QR Code

THE CONNECTED SUBGRAPH OF THE TORSION GRAPH OF A MODULE

  • Ghalandarzadeh, Shaban (Department of Mathematics Faculty of Science K. N. Toosi University of Technology) ;
  • Rad, Parastoo Malakooti (Faculty of Electronic and Computer and IT Islamic Azad University) ;
  • Shirinkam, Sara (Department of Mathematics Faculty of Science K. N. Toosi University of Technology)
  • 투고 : 2011.04.12
  • 발행 : 2012.09.01

초록

In this paper, we will investigate the concept of the torsion-graph of an R-module M, in which the set $T(M)^*$ makes up the vertices of the corresponding torsion graph, ${\Gamma}(M)$, with any two distinct vertices forming an edge if $[x:M][y:M]M=0$. We prove that, if ${\Gamma}(M)$ contains a cycle, then $gr({\Gamma}(M)){\leq}4$ and ${\Gamma}(M)$ has a connected induced subgraph ${\overline{\Gamma}}(M)$ with vertex set $\{m{\in}T(M)^*{\mid}Ann(m)M{\neq}0\}$ and diam$({\overline{\Gamma}}(M)){\leq}3$. Moreover, if M is a multiplication R-module, then ${\overline{\Gamma}}(M)$ is a maximal connected subgraph of ${\Gamma}(M)$. Also ${\overline{\Gamma}}(M)$ and ${\overline{\Gamma}}(S^{-1}M)$ are isomorphic graphs, where $S=R{\backslash}Z(M)$. Furthermore, we show that, if ${\overline{\Gamma}}(M)$ is uniquely complemented, then $S^{-1}M$ is a von Neumann regular module or ${\overline{\Gamma}}(M)$ is a star graph.

키워드

참고문헌

  1. D. D. Anderson, Multiplication ideals, multiplication rings and the ring R(X), Canad. J. Math. 28 (1976), no. 4, 260-768.
  2. D. D. Anderson and M. Naseer, Beck's coloring of a commutative rings, J. Algebra 159 (1993), no. 2, 500-514. https://doi.org/10.1006/jabr.1993.1171
  3. D. F. Anderson, M. C. Axtell, and J. A. Stickles, Zero-divisor graphs in commutative rings, Commutative algebra, Noetherian and non-Noetherian perspectives, 23-45, Springer, New York, 2011.
  4. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706-2719. https://doi.org/10.1016/j.jalgebra.2008.06.028
  5. D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), no. 8, 3073-3092. https://doi.org/10.1080/00927870802110888
  6. D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61-72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
  7. D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221-241. https://doi.org/10.1016/S0022-4049(02)00250-5
  8. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  9. A. Badawi and D. F. Anderson, Divisibility conditions in commutative rings with zero-divisors, Comm. Algebra 38 (2002), no. 8, 4031-4047.
  10. A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178. https://doi.org/10.1016/0021-8693(81)90112-5
  11. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  12. G. A. Cannon, K. Neuerburg, and S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, Nearrings and nearfields, 189-200, Springer, Dordrecht, 2005.
  13. F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), no. 2, 206-214. https://doi.org/10.1007/s002330010128
  14. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
  15. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779. https://doi.org/10.1080/00927878808823601
  16. SH. Ghalandarzadeh and P. Malakooti Rad, Torsion graph over multiplication modules, Extracta Math. 24 (2009), no. 3, 281-299.
  17. J. Han, The zero-divisor graph under group actions in a noncommutative ring, J. Korean Math. Soc. 45 (2008), no. 6, 1647-1659. https://doi.org/10.4134/JKMS.2008.45.6.1647
  18. F. Kash, Modules and Rings, London: Academic Press, 1982.
  19. P. Malakooti Rad, Sh. Ghalandarzadeh, and S. Shirinkam, On the torsion graph and von Neumann regular rings, Filomat 26, 47-53. To appear.
  20. H. Matsumara, Commutative Ring Theory, Cambridge, UK: Cambridge University Press, 1986.
  21. S. P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commutative Rings 1 (2002), no. 4, 203-211.
  22. P. Ribenboim, Algebraic Numbers, Wiley, 1972.